Design and implementation of an Electronic Voting
system based on homomorphic tallying of votes

Treball Final de Carrera

Universidad de Lleida
Author: Andriy Bakshalov
Advisors: Josep M. Miret Biosca
Victor Mateu Meseguer

June 2014

Contents

1 Introduction
1.1 Objectivestobedone

2 Mathematical Background
2.1 Modular Arithmetic
2.2 Elliptic Curves
2.2.1 Operations with Points
2.2.2 Elliptic curves over rings Zy
2.2.3 Elliptic curves over rings Zpy2 « o« o 0. ..
2.3 Cryptography
2.3.1 Paillier Cryptosystem
2.3.2 Paillier with Elliptic Curves

3 Electronic Voting
3.1 Paradigms
3.1.1 Mixnet protocols
3.1.2 Homomorphic tally protocols
3.1.3 Blind Signature-based protocols
3.2 Security Requirements

4 Electronic Voting with Paillier cryptosystem
4.1 Referendum voting
4.2 Multiple Candidates Voting

5 Details of the Implementation
5.1 Sage implementation Lo
5.2 CH++ implementation.

6 Results and Conclusions
6.1 Experimental Results.
6.2 Conclusions e
6.3 Future Work

19
20
21
21
22
23

25
27
28

31
31
35

CONTENTS

Chapter 1

Introduction

In modern society almost everything is tending to make things in the demo-
cratic way, giving everyone a chance to make their own decisions. One of
the most important processes in every democratic country is selecting a new
president or the government representatives. For now, a lot of people think
that this process is defrauded and the results are simply manipulated by
others. This is a fear of everyone and they probably think that their vote
will not change anything. This process makes people to gather in a public
place and deposit their vote in the urn, and after the voting all votes are
going to be counted and the result published.

With the fast and strong evolution of computer science and technology,
people propose new alternatives to the traditional voting process based on
computers and the internet. There is a big discussion about the most secure,
faster and better way to implement them, but not only the implementation
problem is holding this process, also there is a human indecision. A lot of
them think that this method is not secure or it will be even worse than the
traditional one, as it happened with bank accounts and internet payments,
not everyone can use and trust them. Probably they can be right, because
of the hundreds hacking attacks on bank systems proving that they have
vulnerabilities.

For this purpose we want to implement an electronic voting process based
on the homomorphic property to show that this process is easy and can be
a lot more secure than the traditional one.

1.1 Objectives to be done

At this project we propose to design and implement a simulation of a real
electronic voting process with Paillier encryption scheme. To realize these
tasks we need to:

e Learn mathematical basis:

6 CHAPTER 1. INTRODUCTION

— Learn about elliptic curve cryptography.
— Learn Paillier cryptosystem.

— Learn about homomorphic e-voting systems.
e Implementation:

- Implement original Paillier cryptosystem and based on elliptic
curves using Sage programming language.

- Implement both cryptosystems again with a more common pro-
gramming language.

- Create a simulation of a real Electronic Voting process.

e At the end, make tests with the both implementations and compare
them.

This memory contains three main parts. At the first of them we explain
basic mathematical background needed to understand basic mathematics,
cryptography and how Paillier cryptosystem works. The second one, ex-
plains how the work was realized. The last one, shows the results and
conclusions of the work and a possible future work to be done.

Chapter 2

Mathematical Background

In this chapter we are going to explain some basic mathematical knowledge
needed to understand how to work with this project.

2.1 Modular Arithmetic

Modular arithmetic is the main base of an actual public key cryptography.
It is based over a positive integer N which we fix as a given, called modulo.
All the numbers will have value as maximum until N — 1 with N element
converting into 0 and N + 1 into 1.

Given two integer numbers a and b we say they are congruent modulo
N and we write a = b (mod N) if N divides a — b.

A group is a set with a binary operation, which has an identity element, is
associative and every element has an inverse. If the operation is commutative
the group is called abelian.

A cyclic group is a group which has a generator g. This element can
generate all the other elements by using the binary operation. According to
the binary operation we can classify the groups in:

n

e Multiplicative group (G,-):g- -+ -g=g".

e Additive group (G,+):g+-"-+g=n-g.
A ring is a set with two binary operations: (A, +,-), where:

e (A, +) is an abelian group with identity element.

e (A,-) satisfies the associative property.

e The binary operation - is distributive with respect to the binary oper-
ation +.

Also we can define a field which is a set with two binary operations
(K, +,-) where:

8 CHAPTER 2. MATHEMATICAL BACKGROUND

e (K,+,-) is a ring whose identity element with respect to + is denoted
by 0.

o (K —{0},-) is a group.

If N is a positive integer, (Zy,+,), where Zny = {0,1,...,N — 1} is a
ring. When N is a prime number p, the ring (Z,, +,) is a field, that is, all
the elements in Z, — {0} are invertible. Moreover, we will denote by Z}, the
set of invertible elements of Zy. It is well known that (Z%,-) is an abelian

group.

2.2 Elliptic Curves

An elliptic curve over a field K is an algebraic curve which can be expressed
by Weierstrass equation:

E:y? +a1zy + asy = 2 + asx® + aux + ag, a; € K. (2.1)

In case that, the characteristic of K is not 2 or 3, the equation 2.1 can be
expressed in a simplified form as:

E:y?* =23+ ax+0b, a,beK
and the discriminant A is defined as:
A = —16(4a® + 276%) # 0.

The set of points expressed by (z,y) € K x K which satisfy the equation of
the curve with the point at infinity O is denoted as E(K). The total number
of points of an elliptic curve over a finite field Z, is denoted as #FE(Zj).

Figure 2.1: An elliptic curve over R

At the figure 2.1 we show an example of an elliptic curve over the real
field.

2.2. ELLIPTIC CURVES 9

2.2.1 Operations with Points
Point addition

Addition of two points of an elliptic curve can be defined with a help of
chord-tangent method. Moreover, with this addition operation, the set of
points over E(K) forms an abelian group with the point at infinity O as the
identity element.

The easiest way to understand addition, is to see it geometrically. In
case when we have two different points P and @, we can connect them with
a line and continue it until it cuts in a third point our elliptic curve and
the opposite point will be the result. In case when we double a point P, we
need to trace the tangent line at P and make the same as in the case of two
different points. The figure 2.2 shows graphically the process.

W

Figure 2.2: Elliptic curve point addition
In algebraic way it can be expressed as follows:

Let P = (z1,y1) and Q = (x2,¥2), where P, Q € FE(K), so the addition
will be given by P + @Q = (x3,y3), where:

P+Q= (>\2—SE1 —x2, (1 — z3)A — Y1),

being
(yl — y2)) if T 7é x2,
(w1 — x2)
323 +a

oy if x1 = 29 and y1 # yo.

10 CHAPTER 2. MATHEMATICAL BACKGROUND

Point multiplication by a scalar

From point addition operation it is possible to deduce point multiplication
by a scalar k. There are a lot of methods to do this operation, but one of
the most optimized is the binary method. The basic idea is to transform a
scalar k into the binary representation, remove the first bit and if the digit
is 0 it will multiply the point by 2, and if it is 1 it will add the given point
and multiply it by 2. For example, if £ = 6 = 110, so we get:

k-P=6-P=2-(2-P+P).

This method is used in elliptic curve cryptography.

2.2.2 Elliptic curves over rings Zy

In this case N = p - q, where p and ¢ are primes. For an elliptic curve F
defined over a ring Zy the operations are similar to the curves over a finite
field, but the biggest difference that working with Zy the addition operation
is not possible for all the values because there is a probability to have an
element which does not have an inverse because of using rings, since not all
the ring elements can have an inverse. Working with big numbers N, this
probability is almost zero.

Group structure of Zy

Let us consider the application:

E(Zn) — E(Zp) x E(Z,)
[w:y:z] — ([xp:yp: 2l [1 Yg 1 24)),

defined by the projections of elements Zy over Z, and Z,. By the Chinese
remainder theorem it is a bijection and as it is compatible with pseudo
addition of E(Zy) and with addition of E(Z,) x E(Z4) induce a group
structure over E(Zy) with a neuter point at infinity [0 : 1 : 0]. So it is
possible to consider:

E(Zy) ~ E(Z,) x E(Zy).

Considering N = p-q and d = lem(#E(Zy,), #E(Z,)), the following relation
holds:
d-P=[0:1:0,YP € E(Zy).

2.2.3 Elliptic curves over rings Zy-

Before speaking about N2 where N = p - ¢, it is better to explain charac-
teristics of the elliptic curves defined over the ring Z,2, where p is prime.

2.2. ELLIPTIC CURVES 11

Let be E an elliptic curve defined over Z
application:

p2, SO it is possible to consider this

E(Zy) — E(Zp)

[:y:z] — [zpiyp ozl
defined by the projection of elements Z,> over Z,. This application is ex-
haustive and its kernel is made by the set of points:

Or=1lkp:1:0],k € Zy,

and they are points at infinity of F(Z,2). This application is compatible
with pseudo addition of F(Z,:) and E(Z,). In this way, E(Z,2) is an abelian
group.
So now let us see the group structure for E(Zpy2), where N = p-q and p,
q are primes. So the application can be considered similar to the previous
as:
E(ZN2) — E(Zp2) X E(Zqz)
[y :z] v ([T sy 2], [Tg2 1 yg2 ¢ 22]).
By Chinese reminder theorem it is possible to prove that this is a bijective
application, so it induces a structure of group in E(Zyz2).
Considering N = p - q and d = lem(#E(Zy),#E(Z,)). The following
relation holds:
d-N-P=[0:1:0],YP € E(Zp>).

Elliptic curve point classification over Zy»

The points of an elliptic curve E over (Zy2), N = p-q can be separated into
tree groups:

e Points at infinity: Op = [kN :1:0],k € Zy.
e Points semi-infinity: [z :y: 2] € E(Zy2), where ged(z, N) = p or q.
e Affine points: [z :1: 2| € E(Zy2).

In this case, the method of adding points remains the same, by the
rule of chord and tangent, but only in case when exist inverses modulo N2
necessary for the calculation. So the changes to the algebraic operation of
adding and doubling will be:

When z1 # x9 the sum of (x1,21) and (2, 22) is given by (x3, z3):

r3 = 1+ 2+ (21 — Aw1)(2a) + 3bA2) /(1 + aA? + bA3),
23 = MNaxg—x1) — 21,
A= (21 — 22)/(1'1 — :L'Q).
In case when 21 = 2 the doubling of (x1, 21) is:
3 = 2m1+ (21 — Ax1)(2a) + 30A2) /(1 + a\? + bA3),

z3 = MNag—z1)— 21,
A= (322 +az?)/(1 — 3b2? — 2ax121).

12 CHAPTER 2. MATHEMATICAL BACKGROUND

Where a, b, x1, x2, 3, 21, 22, 23, A € N2.
With this operation it is possible to show that:

Or+ 0 =0k =[(k+h)-N:1:0].

2.3 Cryptography

From the times of the old Egypt until today, people always wanted to hide
their secrets from others. The first methods to hide them were simply re-
ordering letters in the words or changing a letter for the next one from the
alphabet, but those methods were not secure to keep the information in
secret from the third party members.

One of the improvement was Caesar cipher, where letters were changed
by a fixed number of positions further down the alphabet, and this number
was secretly passed to the destination, so he is the only one who could
decrypt and obtain the original message.

With the birth of computers and information technology changed every-
thing, because of the calculation power, so all the cryptography had to make
a greater improvement of their complexity. From DES (Data Encryption
Standard) a modern symmetric cryptosystem to the public key cryptogra-
phy and, in particular, elliptic curve cryptography. There is a big step which
offers new advantages.

In the modern society, cryptography is focused over the internet and
helps users to interchange data securely. The basic model of how this process
works:

e Sender encrypts a message and sends the result to the receiver.
e The encryption is transmitted by an insecure channel.

e The receiver receives the encrypted message and decrypts it to obtain
the original message.

So this is why we need cryptography, if we want to send our message by
some insecure way, first of all we need to transform it in something not
understandable for others and if they pretend to steal the secret, they will
have no idea how to transform it into a readable text.

By the flow of time, nowadays we have different types of cryptosystems:

Symmetric cryptosystems : are the simplest cryptosystems. They
are based on that both users have the same key and it works in two ways.
The most common are:

e DES (Data Encryption Standard) [11]: this algorithm based on 64 bits
keys, where 56 bits are for the key and other 8 to check and correct

2.3.

CRYPTOGRAPHY 13

errors. Nowadays this algorithm is not a standard any more because it
was broken and 56 bits keys are not secure for the modern computers.

AES (Advanced Encryption Standard) [9]: it is a symmetric algorithm
which works with keys of 128, 192 and 256 bits. AES became effective
as a federal government standard on May 26, 2002 after approval by
the Secretary of Commerce.

IDEA (International Data Encryption Algorithm) [5]: it is based on
simple operations as: addition, multiplication and XOR with block
sizes of 64 bits and key size 128 bits.

Asymmetric cryptosystems (public key cryptography) : are more

complex than the symmetric because they use different keys for encryption
and decryption. This way, these cryptosystems are more secure than the
symmetric ones.

Some example of them are:

e RSA [14]: this is one of the most used cryptosystems over the inter-

net. The difficulty stands on factoring the product of two large prime
numbers p and g. The main problem is the use of computational easy
numbers that can be calculated fast, as the system does not use any
random element. There are a lot of attacks for this algorithm, but as
prime numbers increase their size, more difficult becomes to break it.

ElGamal encryption system [3]: is an asymmetric key cryptosystem
which is based on DiffieHellman key exchange and it is used at GNU
Privacy Guard software. Encryption of this method is defined over a
cyclic group G and the security depends on the difficulty of comput-
ing the discrete algorithm in G. ElGamal encryption is probabilistic,
meaning that a single plaintext can be encrypted to many possible
ciphertexts, with the consequence that a general ElGamal encryption
produces a 2:1 expansion in size from plaintext to ciphertext. More-
over, the encryption needs two exponentiations, but they are indepen-
dent and the decryption needs only one.

Paillier cryptosystem [12]: is one of the asymmetric systems which
works with two prime numbers, as in case of RSA, but uses a cyclic
group of order N2, where N = p-q. One of the important characteris-
tics of this system is the use of a random element and the homomorphic
property which is going to be explained in the next chapter.

A special type of cryptographic functions are hash functions which are

functions that compress, meaning that the output will be shorter than the
input length. Often, these functions take a random length input and convert
it into one whose length is a fixed number, like 160 bits. Hash functions are

14 CHAPTER 2. MATHEMATICAL BACKGROUND

used in many parts of the cryptography, as digital signatures. There are
many different types of them, with different security properties, the main
ones are:

- One way functions. It is not possible return hashed value to its original
state.

- Collision free. It is almost impossible to find two different messages
with the same hash value.

- Efficiency. It is very easy to calculate hash values.

- Uniform. Messages with arbitrary length will produce fixed length
hash.

The common used Hash functions are:

e MD5 (Message Digest 5) [13]: it was an improvement of MD4 algo-
rithm and became a widely used algorithm which produced 128 bit
hash values. By the year 2004 it was showed that it is not collision
resistant and it was proposed to use SHA-1 for more security.

e SHA-2 (Secure Hash Algorithm - 2) [10]: is an improvement to SHA-1
hash function and provides digesting of 256 bits messages to the hash
values of 256, 384 or 512 bits. This hash is more secure than MD5,
but it is more difficult to calculate.

Homomorphic property

Some cryptosystems have a special ability called homomorphic property,
where it is possible to make some arithmetical operations with the encrypted
text without decrypting, such as addition or multiplication. When the sys-
tem has this property, it can be used to multiply a ciphertext and after the
decryption the result will be the addition of both original messages. This
is supported by Paillier cryptosystem which is going to be explained next
with more detailed specification of the homomorphic property.

2.3.1 Paillier Cryptosystem

Paillier cryptosystem is a probabilistic algorithm with a public key encryp-
tion scheme. The security is based on computing the n-th residue which is
believed to be computationally difficult.
In order to define this problem, given an integer N = p - ¢, with p and
q prime numbers, and an element g € Z}, of order multiple of N (being
#Z4> = N(p —1)(q — 1)), Paillier considered the function:
Fy Ly XZn —> Zyo,
(r,m) — Vg™ (mod N?).

2.3. CRYPTOGRAPHY 15

This is a bijective function, so there exists an inverse function. Thus, given
¢ € Ly, there exists a unique m € Zy such that there is a unique r € Z}y
such that:

Fy(r,m) =rVg™ =c.

This element m € Zy is called the N-residuosity class of ¢ and it will be
denoted by:

m = ||c/g-
Given c, g € Z}2, the problem of finding m € Zy, such that m = ||c||,
is a computationally hard problem called the composite residuosity class

problem). Nevertheless, it has been shown that from the knowledge of the
factorization of N = p - ¢ we can deduce the integer m € Zy.

Initialization

As a first step to use this system we need to generate public and private
information, the steps are:

(1) Choose two big random prime numbers p and ¢ satisfying
ged((p—1),(¢ - 1) = 1.

(2) Calculate N =p-q.

(3) Calculate A =Ilem(p—1,q—1)=(p—1)(¢ — 1).

(4) Generate a random number g € Z}..

(5) We need to be sure that N divides the order of g and insure that it
has a multiplicative inverse:

p=L(g" (mod N?)™' (mod N),

where the function L is defined as:

Completed those steps it is possible to define public information (N, g)
and the private values (A, u) which is going to keep in secret.

16 CHAPTER 2. MATHEMATICAL BACKGROUND

Encryption

The message to be sent will be denoted as m, where m € Z%. To encrypt
the message it is needed to make these steps:

(1) Generate random element r, which is € Z%.

(2) Calculate encrypted text using the function:

c=E(m,r)=g™-rV (mod N?).

This cryptosystem uses a random element r which makes possible that
two different encrypted messages are the same when decrypted. This makes
that if somebody gets an access to the channel where your messages are
passing, he can not even guess if those messages are the same or not.

Decryption

After the receiver got the encrypted message ¢ € Z},, he needs to decrypt
it using his private keys (A, p):

D(¢) = L(¢* (mod N?))-pu (mod N).
Notice that:

Indeed,

m . 7,,N A myA _
D(Em,1) = D™ 7 (moa %) = OV = L WO

Now, taking into account that
t* =1 (mod N), Vt € Zi2, A= (p—1)(¢g— 1),
we get
P =1+k-NkeZy, and (¢)" =14+m-k-N (mod N?).

From this, it follows that

2.3. CRYPTOGRAPHY 17

Homomorphic property

This cryptosystem offers important homomorphic property which gives a set
of advantages as:

e Multiplication of two cyphered texts will be decrypted as the sum of
the original messages, like this:
D(E(m,r)- E(m',7")) (mod N?) = m+m' (mod N).
e Cyphered text elevated to the power k can be decrypted as a multi-
plication, like this:

D(E(m,r)¥) (mod N?) = k-m (mod N).

2.3.2 Paillier with Elliptic Curves

In this section we present a version of Paillier cryptosystem using elliptic
curves [4].

Initialization

As in the previous section, we have to generate a set of values for encryption
and decryption processes.

(1) Choose two big random prime numbers p and ¢ satisfying
ged((p—1),(¢—1)) =1

2) Calculate N = p-q and N2.
(p-q

(3) Choose two random numbers a and b (mod N) and generate an elliptic
curve E over Zpz.

(4) Calculate the cardinal of the elliptic curve E over the field Z,, and over
the field Z,, .

(5) Calculate d = lem(#E(Zy), #E(Zy)).

(6) Generate a random point @’ on the elliptic curve E over the ring N2
and calculate @), where Q = N - Q'.

The problem of this system is possibly laying in the operations with points
where the coordinates are multiples of p or ¢ because of using N2, so it will
be impossible to find the inverse of the element and it will crush the system
and all the process. This is more probable using low values for the primes p

18 CHAPTER 2. MATHEMATICAL BACKGROUND

and ¢, but as range grows, the probability grows down. In conclusion, not
always the obtained values are good to use.

After obtaining all the necessary information it is possible to define the
public information (N, @, a,b) and the private key d.
For more information about this cryptosystem consult [4].

Encryption

Let us denote the message to be encrypted as m € Z};, and consider the
point P, = [m - N : 1:0] on the elliptic curve E over Zyz=.
To encrypt the message it is needed to follow these steps:

(1) Generate random element r, which € Z}.
(2) Calculate the points - @, P, on the curve over Zy2 and add them to
obtain the encrypted point:

S=r-Q+ P,

Decryption

To decrypt the ciphertext S it is needed to use the private key d = lem(#E(Zy,),
#E(Lqg).

(1) Calculate the point S” = d - S on the curve E over Zy2. Note that
S"=d-Py,=[d-m-N:1:0].

(2) From the point S’; dividing the first coordinate by N we obtain x =
d-m.

(3) Calculate the original message m multiplying x from the step (2) by
at:

m=axz-d ' (mod N).

Chapter 3

Electronic Voting

In our democratic society one of the most important things is freedom to
choose something better for you. In every democratic country the process
of voting is a very important event where people choose new government to
rule their country for the next years and make it better in all the ways.

As probably everyone knows, today not all the countries can afford a
secure and democratic election process. Sometimes, coercion of the vot-
ers forces people to vote for a determinate candidate, that happens quite
frequently in poor countries.

With such a powerful progress of the information technologies, people
start to propose to elevate this voting process to a new level, a level of
Electronic Voting (E-voting), where voters can be sure that their vote will
not be manipulated or other people would not know which candidate did
they vote. The main reasons of implementing this type of voting are:

a) It can increase the security in the way that it will be more difficult to
relate the voter with the emitted vote.

b) People can access from their houses, so there is no need to prepare
voting houses, employ people and waste money on the preparation.

c) Every voter will have the possibility to check if his emitted vote was
counted correctly.

Electronic voting makes the voting process simpler for the government
and for the citizens. Of course it has different internal stages like:

e Preparation.

- Publishing the election. During this process the list of candidates
along with the public information and the software/hardware re-
quirements for voting will be announced.

19

20 CHAPTER 3. ELECTRONIC VOTING

- Registry of voters. At this step it is important to collect the data
from the participants at election, to prepare their identification
and avoid errors.

e Voting.

- Identification of the voter. Every voter needs to introduce his
identification information to be able to participate in the election.

- Candidate selection. When the user is successfully identified he
will be able to see the list of candidates and make his choice.

- Sending the vote. After the voter has chosen his candidate he
will send his vote to the server.

- Validation of the vote. When the server receives the vote, it has
to check if all the data is correct and then it can be added.

e Final results.

- Transferring the votes. When the voting time has ended all the
votes have to be transferred to a trusted party where they are
going to be decrypted.

- Permutation. At this step, the relation between the voter and his
ballot is broken.

- Decrypting and adding the votes. Recover the initial message
and add the vote to the voted candidate.

- Checking the results. After all the job is done, there is a need to
check if all the data was proceeded correctly.

- Publishing the result. After all the checkings, the results can be
safely published.

Those are the common steps of electronic voting. There are a lot of dif-
ferent cryptosystems which can offer an easier implementation of the voting
step as they have the homomorphic property so there will be no need to
decrypt each vote one by one. It will happen with Paillier cryptosystem as
it is detailed in Chapter 4.

3.1 Paradigms

In order to guarantee that the system satisfies all security requirements there
are different cryptographic techniques.

3.1. PARADIGMS 21

3.1.1 Mixnet protocols

This protocol is the closest to traditional model of voting. The voter chooses
his candidate, and encrypts the message with his choice. Then the ballot is
sent to the server which will retain all the encrypted votes. After the voting
process, ballots will be mixed and cyphered again, then opened one by one
and tallied. This way, the protocol breaks any relation between the votes
and their emitters.

The mixing process is a low cost operation and the difficulty grows in
a linear way, but the difficulty of repeating the cyphering process depends
on the amount of votes and the cryptosystem key length, so the cost grows
significantly. But what if, new cyphering creates n new votes and changes
them by the existent ones. The solution for this problem are the proofs of
correctness.
For more information see [8].

Proofs of correctness

These proofs are used to show that the messages have not been changed dur-
ing the mixing. There are different types: interactive and non-interactive.
At the interactive ones, it is needed to interchange the information between
the user and the verifier. This limits the number of people who can carry
out them in terms of voting. The other ones, do not need any interaction,
the user sends all the information to the verifier and the testing information
is public. This way, it verifies that the mixing process was correct and does
not waste the time on waiting for a response.

More information about the proofs can be found at [6].

3.1.2 Homomorphic tally protocols

Homomorphic voting process require cryptosystems which are supporting
the homomorphic property. This is useful in electronic voting because we
can join the votes when they are encrypted and, at the end, only make
one decryption of the resulting sum. This way, it decreases the number of
decryptions and the aggregated result can not be directly linked with any
voter.

This type makes the decryption process easier and faster, but there is
a problem of receiving corrupted votes. If they are added to the sum of
votes it can produce the alteration of the final result. For this reason there
exist proofs which check that a message lies in a set (MLS proofs) without
decrypting it.
For more information about this protocol see [1].

22 CHAPTER 3. ELECTRONIC VOTING

MLS Proofs

One of the important parts of electronic voting is to demonstrate that the
incoming vote encrypts a valid message and this is not some intent of break-
ing the system or manipulating the election. To avoid this type of insecurity
it needs to implement a set of tests called MLS proofs.

These tests can be carried out over different cryptosystems. But, in this
case, it has been implemented over Paillier, since it has the homomorphic

property.
For this test, there will be two participants: the user and the verifier.
The user has to prove to the verifier that encrypted text:

c=gm -V (mod N?) (3.1)

encrypts a message belonging to S = {my,ma,...,my}, where m; rep-
resents an original message.

e The user generates p € Zj,. He also generates p — 1 random values
{ej}jzi € Zy and p — 1 values {v;};2; € Z}y.

e The user calculates:
u; = pY (mod N?)
and

{uj =0 (g™ /) (mod N*)}jz;.

e The user generates egpqy = H(u1,...,up) where H represents a hash
function, and calculates:

— €; = €chall — Z]-?éi € (mod N) .

— vy =p-ré -g(esha”*zj#i ej)+N (mod NQ), where = is a quotient
of the integer division.

e The user sends {uj, vj, €j}jeq1,..py and ecpay to the verifier.

e The verifier checks that eqpqy = > ;€ (mod N).

e For the last one, the verifier checks that vév =u;(c/g™i)% (mod N?)
for every j € {1,...,p}.

More information about the proofs can be found at [7].

3.1.3 Blind Signature-based protocols

A challenge for electronic voting is to guaranty the privacy for all the par-
ticipants, ensuring that their votes can not be related to them. The idea
of this methodology consists in that the person will apply a blind factor for
the message m and send it to the authentication authority which will sign

3.2. SECURITY REQUIREMENTS 23

the received message and return it to the sender. After this, the person will
remove the blind factor from the signed message and sent it to the server
through an anonymous channel. When the voting period is concluded, votes
are decrypted and tallied.

For more information see [2].

3.2 Security Requirements

The most challenging part of e-voting is to show that this type of voting
process is secure.

The most important properties which every Electronic voting process
has to have are:

- Confidentiality. No one knows who voted in favour of whom.
- Uniqueness. Only one vote for each voter.
- Authorization. Only the authorized person can make his vote.

- Precision. All the votes have to be checked for the correctness to avoid
the errors.

- Partial results. No information can be shared before the final result
was published.

- User check. Every participant can check if his vote was received and
tallied.

In the voting process it can be described three roles:

e Voter. Each person which will choose their candidate and send the
encrypted and signed message to the server.

e Polling Station. A server which will collect all the votes and publish
the result of the process.

e Trusted Authority (TA). It is responsible of storing the private key
and decrypting the votes sent by the Polling Station.

24

CHAPTER 3. ELECTRONIC VOTING

Chapter 4

Electronic Voting with
Paillier cryptosystem

After explaining the basics about electronic voting it is possible to explain
how to design and implement a voting process with the Paillier cryptosys-
tem.

First of all, Paillier cryptosystem is homomorphic, so the Polling Station
(server) will receive the votes and check them with the MLS proofs. After
passing the proof, it will be added to the sum of all the votes. When the
election time is over, the server will not accept new incoming votes. It will
send the encrypted sum to the TA, which will decrypt it with the private
key and return the decrypted message to the server. Then it will translate
the result into the votes for each candidate and publish them. Let us take
a look on each identity.

Voter will receive a list of possible candidates to vote and have the
possibility to choose one of them. When the candidate is chosen, the voter
sends his vote to the server, so the client part will take his message and
encrypt it using the Paillier cryptosystem with the public information. After
that, the vote is signed and sent to the polling station for validation and
further work.

Polling Station plays the role of the server and contains the list of
candidates for voting. In this case, the server will only gather all the received
votes and make a sum of them, but only if they passed the MLS proofs.
When the server will receive the order of stopping the voting process it
will reject all the new incoming messages and send the sum of votes to the
trusted authority. After receiving the message from the trusted authority it
will relate each candidate with his obtained votes and publish the result of
the voting process.

TA only accepts messages from the server and its function is only to
decrypt the incoming messages from the polling station with the private key
proving that it has been decrypted using the appropriate private key.

25

26CHAPTER 4. ELECTRONIC VOTING WITH PAILLIER CRYPTOSYSTEM

Polling Station

eLECTION o
7 % 4
v w
RESULTS &,
‘\-t’b
5,6
2
/ <
Voter KSTP

Figure 4.1: Electronic Voting design

This way, it is possible to see that this structure is proposing high security
level, as the vote is travelling fully encrypted through the public channel, so
if nobody has the private key it is impossible to know which is the original
message. When the vote comes to the server it is checked to be correct and
added to the total sum of votes but it is never decrypted. This way, the
relation between the voter and his vote is totally lost. The polling station
has no knowledge about how to decrypt the accumulated sum, so even if
somebody attempt to find this information it is impossible to decrypt it
without knowing the private key.

Figure 4.1 shows how this system can be represented graphically.

1) The Polling Station send to the voter the list of candidates.
2) A Voter select his candidate.

3) A Voter send his encrypted vote to the Polling Station.

4) A Votes are added to the total at the Polling Station.

5) The Polling Station send encrypted final result to the TA.
6) The TA returns decrypted result to the Polling Station .

7) The Polling Station publishes the result of the election.

4.1. REFERENDUM VOTING 27

4.1 Referendum voting

With Paillier, it is possible to make a referendum voting as it contains only
the votes “accept” and “reject”, so we can say that the vote “accept” will
be a message with value 1 and “reject” with value 0. Thus, when the voter
will choose his selection and send it to the polling station, internally the
system will encrypt it using Paillier crptosystem and send it to the server
which will add it to the total sum using the homomorphic property.

In this way the vote of the voter ¢ will be encrypted as

‘/z:er_‘_Pmla

where P, = [m;N : 1:0] and m; € {0, 1}.

To check the correctness of the message we use the MLS proofs and make
sure that V; encrypts a message in range m € {0, 1}.

The server will collect the votes and add them to the total sum, obtain-
ing:

where n is the total number of participants in the electoral roll. Recalling
from the properties of the elliptic curves over N2 we have that it will contain
the addition of the points at infinity, so the result will keep the addition of

the votes:
n

n

Z Vi= (Z 7"1') -Q+ Pm1—|—~~-+mn7
i=1 i=1

where Py, 4pm,, = [(m1+---+my)-N:1:0land m; € {0,1},i=1,...,n.

After the voting process has finished the sum of votes will be decrypted

multiplying by the private key d. Because of this the (r1 +---+1r,) - Q part

will result in the point [0: 1: 0] and P, +...t1m,, in the point R of the form:

R=1[p:1:0],

where p contains (mj +---+my)-d- N.
From the point R we obtain R’ by dividing the first coordinate of R by
N:
R =[mi+-+my)-d:1:0],

and the last step to get the final result is to multiply the first coordinate of
R' by d—! which is a multiplicative inverse of d in Zy:

Myesult = (ml +e +mn) cd-dl

To find the result with 1 and 0 knowing that there were n participants
and knowing the final result m,.csu1¢, Wwe can obtain the number of voters for
“accept” and “reject” as simply as: the my.qq ¢ Will be the votes “accept”,

28CHAPTER 4. ELECTRONIC VOTING WITH PAILLIER CRYPTOSYSTEM

and “reject” are: m — Myesyre- When myegsur > n/2 we can say that it was
accepted, if not, it was rejected.

This was one of the possibilities for the referendum, but there is another
one. If we encrypt the vote for “reject” as —1 (mod N), so when this mes-
sage is added to the total sum which contains the polling station, it will
simply subtract 1 from the sum. So with this variation it is possible to in-
clude a vote “not sure/don’t know” with a value 0 and vote for “accept” let
it the same 1. When the voting process will go on, the result will be direct,
as if its value is positive the vote for “accept” won, but if it is negative, the
“reject” vote won. This makes the system get the final result faster, to know
who won the voting process without making any mathematical operation,
but it makes impossible to know the number of votes for “accept”, “reject”
and “neutral”. So if it is only needed to know the final result, the fastest
way is the second one, even having three possible responses, but if it is im-
portant to know the amount of votes for each category, the only way is the
first one.

4.2 Multiple Candidates Voting

The referendum voting only gives us the possibility to have two or three
possible responses, but what is about having four or more candidates. For
this type, the main problem is how to identify each candidate from the other
ones in a message. The answer is easy, we have information about the total
number of candidates and the voters, so in relation to the maximum number
of voters it is possible to assign a message for each candidate as a distance
equal to the number of voters. For example, if we have n voters and k
candidates, the message identifying each candidate can be distributed as it
is shown on the following table:

candidate | ¢1 co c3 ... Ck
message | 1 [n+1]|(m+1)2[... (n+1)F!

When the election process is started, each voter will receive from the
polling station the list of candidates and their respective messages, repre-
sented as a number. When the candidate is chosen, his respective message
will be encrypted with Paillier cryptosystem and sent to the polling station
where it will add the vote to the total sum. For example, for a voter ¢ and
his voting choice for a candidate m; the encryption is creating a point over
the elliptic curve:

V% =T Q + Pmp

where P,,, = [m;- N :1:0land m; € {I,n+1,(n+1)%,...,(n+ 1)*1}.

4.2. MULTIPLE CANDIDATES VOTING 29

After being encrypted and sent to the polling station the vote V;, we
need to check the correctness of the vote with the MLS proofs and ensure
that V; holds a message in range m; € {1,n+1,(n+1)%,..., (n+ 1)1}

The server will collect the votes and add them to the total sum, obtain-

ing:
n
>
i=1

The voting with multiple candidates has the same process as the refer-
endum explained before, so we will not repeat all the same information and
continue from the decryption of the sum of votes.

The last step is to multiply the first coordinate of R’ by d~! which is a
multiplicative inverse of d in Zy:

Myesult = (ml + - +mn) -d - Clil,

where My esuir = Z§:1 z; - (n+ 1)1, being z; = number of votes for the
candidate c;.

To obtain the result of the voting process, this case differs from the
referendum. The decrypted number needs for a backpack treatment where
it will be separated into a number of votes for each candidate. To separate
this number we use some basic mathematical operations. First, we start
with the candidate whose message number is the highest and divide the
decrypted result by this number and the result will be the total number of
votes for this candidate. For example, we have as a result number my.cgyt,
so first we calculate the number of votes for the last candidate ¢, who has
the highest message number, denoted as ¢y and obtained as the quotient of
the integer division:

Pr = mresult/ck-

/

result b0 calculate the results

After this operation we need to calculate the m
for the rest of candidates.

/
Myesult = Mresult (mOd Ck).

For the others, the process is the same, the m/__ . now take place as

the total sum of votes and repeats the process until the first candidate c;.
When the process is finished it will have the total number of votes in favour
of each candidate and then it is possible to publish the result.

30CHAPTER 4. ELECTRONIC VOTING WITH PAILLIER CRYPTOSYSTEM

Chapter 5

Details of the
Implementation

In this project we decided to use two different programming languages: Sage
and C++4. This decision was made because of the great mathematical ad-
vantages of Sage and the ease of use object oriented programming with
C++.

5.1 Sage implementation

Sage programming language is based on Python language and inherits most
of the properties. Sage was made for working with mathematics and has
some build-in libraries for working with elliptic curves, where the operations
are optimized. At this point, creating an elliptic curve over p or ¢ with Sage
as simple as:

E
E

EllipticCurve(GF(p), [a,b])
EllipticCurve(GF(q), [a,b])

To get the cardinality of the created curve:
C = E.cardinality(

First of all, we implemented the original Paillier cryptosystem to see how
it works. For this case the program had functions:

def key_generator(k):return landa, N, g;
def encryption(g,m,N):return c;
def decryption(c,landa,g,N):return message;

The first function key_generator(k) generates private and public values
for working with Paillier cryptosystem of length k, which is an argument
for the function. As a result, returns landa, N, g, where landa is the private
key of the cryptosystem, N is a modulo and g is a generator of the ring Z .

31

32 CHAPTER 5. DETAILS OF THE IMPLEMENTATION

The second one, encryption(g, m, N) encrypts the message m with the
public values g and N. The method returns the ciphertext of the message
m.

The last one, decryption(c,landa, g, N) is used to decrypt the cypher-
text ¢ passing the private key landa and public information g and N. The
returning value of this function is the original message.

With these functions declared, the last thing was to create a body which
was going to test the correct generation of the keys, encryption and decryp-
tion of the cryptosystem. The following code was used for this task:

landa ,N, g = generation(10)
m=50

#Encr.

c=encryption(g,m,N)

print "Encrypted m=", c
#Decrypt
message=decryption(c,landa,g,N)
print "Decrypt m=",message

And the output of this test was:

Encrypted m= 97796126996
Decrypt m= 50

As it shows, the test was correctly executed and the original message is equal
to the decrypted one.

After testing and proving that it works, the next step was to implement
Elliptic Paillier cryptosystem. The functions used for this task were:

def encrypt(m,x,z,a,b,N):return S;

def decrypt(sl,s2,d,a,b,N):return message;
def add(x1,z1,x2,z2,a,b,N2):return x3, z3;
def double(xl,zl,a,b,N2):return x2, z2;

def mul(x1l,z1,k,a,b,N2):return x2, z2;

def generate_point (A , B, N2): return Q;

The function encrypt(m, z, z,a,b, N) encrypts the message m with the pub-
lic information a, b, N, and the coordinates x, z of the point P and returns
the point S which is represented as an array of two positions, where S[0] is
the coordinate x and S[1] coordinate z.

The next function, decrypt(sl, s2,d,a,b, N) decrypts the point S with
coordinates s1, s2 using private key d and public values a, b, N and returns
an original message associated to the encrypted point.

The function add(x1, 21,22, 22, a, b, N2) makes the addition between two
points P and R with coordinates z1, z1 for the first one and x2, 22 for the
second one, using the public values a, b and N2. At the end, the function
returns the coordinates x3, z3 of the new generated point P + R

5.1. SAGE IMPLEMENTATION 33

The next one double(x1, z1,a,b, N2) doubles the point P with coordi-
nates x1, z1 and the public information a, b, N2. The returning values are
the coordinates 2 and 22 of the new generated point P + P.

The other function, mul(x1, 21, k, a, b, N2) multiplies the point P with
coordinates x1 and z1 by a scalar value k using public values a, b, N2. As
a result, returns the coordinates x2, z2 of the new point k - P.

The last one, probably the most problematic that was discovered while
implementing the system. To find a point on the elliptic curve over Zpo.
It is quite difficult, as Sage does not offer any operation for getting this
type of points over such a ring, so the function generate_point(A, B, N2)
was designed. The arguments A and B are the public values of the gen-
erated elliptic curve over the ring Zy2. As the result of the function, the
returning values are coordinates x and z of the new generated point (). The
implemented algorithm is showed below:

while true :
XXX = randint(0 , N)
XXX = Zmod(N) (XXX)
ZZZ = randint(0 , N)
while gcd(ZZZ , N) != 1 :
ZZZ = randint(0 , N)
Zmod(N) (ZZZ)
(XXX~ 3+AAA*XXX*ZZZ~2+BBB*ZZZ"3) /ZZZ
if is_square(aux)
YYY = sqrt(aux)
if ged(ZZC YYY) , N) == 1 :
break

777
aux

The next task was to create a code for testing the implemented system.
The next code generates the keys of 64 bits:

T=64

p=random_prime(2°T)

g=random_prime(2°T)

N=p*q

a=randint (1,N)

b=randint (1,N)

if gcd(n,6%(4*a~3+27*%b"2)) !1=1:
print "error"

error=0

N2=Nx*N

G=IntegerModRing(N2)

Fn=Zmod (N)

34 CHAPTER 5. DETAILS OF THE IMPLEMENTATION

Fp=Zmod (p)

Fg=Zmod (q)
Ep=EllipticCurve(Fp, [a,b])
Eq=EllipticCurve(Fq, [a,b])
CardP=Ep.cardinality()
CardQ=Eq.cardinality ()
M=1lcm(CardP,CardQ)

AAA = Zmod(N) (ZZ(a))
BBB = Zmod(N) (ZZ(Db))
bool = false
while bool == false :
X , z = generate_point(AAA , BBB , N)
Q = mul(x,z,n,a,b,N2);
aux = mul(Q[0],Q[1],M,a,b,N2)
bool = aux != -1
print "Q IS:",Q
message = randint(0 , n)

print "Message: " , message
S2=encrypt(message ,Q[0],Q[1],a,b,N)
print "S=",8

result=decrypt(S[0],S[1],M,a,b,N);
print "The decryption=",result

The execution of this program gave the next output:

Q IS:
(62981422712415248968931021587554897279025661197471787920948525796309477050,
509443144915051139447770324024107529139299922125493875149475679145683842385)
Message: 615428455020646587434061063128117019

S=
(462789889459845113177700878973838770131452856333304385881626047578778083692,
491386635717561656898096226579559219757326635301459927796708743182632673691)

The decryption=615428455020646587434061063128117019

The next case was to check the homomorphic property of the system
and try that the addition of two encrypted messages will give the addition of
their original messages after decryption. For this test the code for generating
public and private values was not changed, so to make it shorter the changed
part will be shown next:

message = 111
print "Message: " , message
Sl=encrypt(message ,Q[0],Q[1],a,b,N)

5.2. C++ IMPLEMENTATION 35

S2=encrypt(message ,Q[0],Q[1],a,b,N)
S=add(S2[0],s2[1],81[0],S1[1],a,b,N);
print "S=",S
result=decrypt(S[0],S[1],M,a,b,N);
print "The decryption=",result

The execution in this case gave the next output:

Q IS:
(44129022777768381317553850443608701770740958204913857172
9310015405171759668,
823899356399500739205244801983646435675496978423432293494
548899150840554297)

Message: 111

S=
(45702450365038387949756560758742318601906771315180173719
1735962635258317737,
804239564000737384202307938287850676034565797307118668334
158833754527975575)

The decryption=222

After implementing the algorithm, it was tested for different lengths of
the prime numbers p and q. The tests showed that if we increase the length
of the primes p and ¢, the time to calculate a point also grows. For example,
to generate the point () with the primes p and ¢ of the length 64 bits, it
was calculated in less than 5 seconds, for 128 bits the time increased up
to 10 — 15 minutes and 160 bits it was searching for 1-2 days. This is on
one side, on the other, for implementing and simulating an electronic voting
process Sage was not good. The idea was to implement the system using
object oriented programming and Sage is not the best option for this, so we
decided to choose another programming language such as C++.

5.2 C++ implementation

We used C++ language because it offers one of best performance, easy
object oriented programming and a useful library called Crypto++ which
contains all the tools needed for working with large integer numbers and
modular arithmetic.

The first task was to design a class based model for electronic voting,
as there will be voters, a server collecting votes and it is needed a trusted
party which will store the private keys. This is because the server has not
enough rights to know the private information.

The program was implemented with tree main classes:

36 CHAPTER 5. DETAILS OF THE IMPLEMENTATION

Voter, PollingStation, KSTP (trusted party).

A main function which creates objects of those classes and generates some
type of electronic voting simulations. There is also a helping class which
holds all needed operations with the points over the elliptic curves. Taking
a close look at the implementation, Voter class was defined as:

class Voter {
private:
Integer n;
Integer a;
Integer b;
Integer Qx,Qz;
Integer Sx,Sz;

Helper h;
public:
Voter (Integer Qx,Integer Qz, Integer a, Integer b, Integer N);
e
void Vote(vector<Integer> &candidates, PollingStation &ps);
+;

Out of this structure, it is possible to see that there is a constructor which
receives as arguments the coordinates QQx and)z of the point @) and a, b
of the elliptic curve and the modulo N. This way, when the instance of
this class was created, we save the public values inside. The other function
is Vote which receives the vector structure candidates containing the list
of candidates and the other one is the instance of PollingStation which
receives the votes.
The next one is PollingStation class with the next structure:

class PollingStation {
private:
Integer n;
Integer a;
Integer b;
Integer Q(x,Qz;
Integer Sx,Sz;
Helper h;
vector<Integer> candidates;

public:
PollingStation();

5.2. C++ IMPLEMENTATION 37

vector<Integer> getResult();

[/ —mmm
vector<Integer> getCandidates();

e R S
Integer getAQ);

e R S
Integer getBQ);

e R S
Integer getNQ);

e e
Integer getQx();

//=mmm e
Integer getQz();

3

In this class the constructor does not receive anything, but inside initializes
the public values. There are getters which return the public values. The
function addVote adds the point P with coordinates « and z to the accu-
mulated sum of votes. The next one is get Result which returns a vector
structure containing the total number of votes for each candidate. The last
one, getCandidates which simply returns the list of candidates and their
respective messages.

The KSTP class which represents trusted authority, has the next struc-
ture:

class KSTP {

private:

Integer n;

Integer a;

Integer b;

Integer M;

Helper h;
public:

KSTPQ) ;
==
Integer Decrypt(Integer Sx, Integer Sz);
s

This class has only one main job, to use decrypt function, to decrypt the
point S with coordinates Sz and Sz and return an Integer value which
represents the decrypted message.

The last one is the Helper class implemented this way:

class Helper {
public:

38 CHAPTER 5. DETAILS OF THE IMPLEMENTATION

void doble(Integer x1,Integer zl,Integer al,Integer bl,
Integer N,Integer& x3,Integer& z3);

void add(Integer x1,Integer zl,Integer x2,Integer z2,Integer al,

Integer b,Integer N,Integer& x3,Integer& z3);

void mul(Integer x1,Integer zl,Integer num,Integer a,
Integer b,Integer N,Integer& x3,Integer& z3);

This one is a helping class to collect all the function which were repeating
at each class. The main point was, if we needed to change anything at
the functions, this change affects only this class, otherwise, we needed to
check and change the implementation at each class. The first function is
DecToBin which returns a binary representation of the integer number.
The next one, doble doubles the point P with coordinates x1 and z1 and
the public values a, b, N. We needed to return two values for this function,
so we decided to store them at the pointers x3 and z3. The next one, add
adds the point P with coordinates x1, z1 to the point R with coordinates x2,
22 and saves the result in 3 and z3. The last one is mul which multiplies the
point P with coordinates x1 and z1 by a scalar num using public information
a, b, N and saves the result at 3 and z3.

After implementing all the classes we created a main function which
was simulating a voting process with different number of the candidates and
voters. One of the tests have this main function:

PollingStation ps;
Integer times("200");
vector<Integer> can=ps.getCandidates();
Voter v(ps.getQx(),ps.getQz(),ps.getA(Q) ,ps.getB(),ps.getN());
cout<<"Voting has started!\n";
while(times>0){
v.Vote(can,ps);
times=times-1;
}
vector<Integer> res=ps.getResult();
for(int i=0;i<res.size();i++){
if (res[i]>res[winner])
{winner = i;}
cout<<"CANDIDATE "<<res.size()-i<<" ::"<<res[i]<<"\n";
}

cout<<"The winner of the elections is candidate:

5.2. C++ IMPLEMENTATION 39

"<<res.size()-winner<<" with "<<res[winner]<<" votes.\n";

¥

In this program, we create an object PollingStation, then define times
which says the number of voters. After that, it gets and stores the vector
with candidates, which is used for a better understanding of the implemen-
tation. Then, creates a Voter object v, passing him public values from the
PollingStation by using getters. The while loop is running times times
and v object sends the vote using Vote function to the object ps. When
the loop has finished, the program will get the result from ps and find the
winner. In the last step, prints the result.
The output for this execution was given in this form:

Voting has started!
CANDIDATE 4 ::56.
CANDIDATE 3 ::44.
CANDIDATE 2 ::50.
CANDIDATE 1 ::50.
The winner of the elections is candidate: 4 with 56. votes.

We can see that the execution was correct and the candidate number 4
got the highest amount of votes.

The reason of creating this type of structure was to separate different
parts of electronic voting as much as possible. For example, voter has noth-
ing to deal with the private key and the KSTP at any moment, as well
as, PollingStation has no information on how to decrypt the sum of votes.
On the other side, KSTP only decrypts and has no information about elec-
tion process. With the implemented system we did the simulations with
100, 10000 and 10% voters sending random votes and proving that it gave a
correct result.

40

CHAPTER 5. DETAILS OF THE IMPLEMENTATION

Chapter 6

Results and Conclusions

In this chapter we are going to explain the results and conclusions of the
finished work. Moreover, we present several proposals for the future work
and improvements for the project.

6.1 Experimental Results

In this section we present several tables comparing the results of our imple-
mentation between the original Paillier cryptosystem and the elliptic Paillier
cryptosystem.

On the first Figure 6.1 we compare the time needed to obtain the public
information and private keys for both cryptosystems in function of key size.

sec.

2000

1800 /

1600

1400 /

1200 /

1000 / —&—Without
200 ﬂ ——With EC
600 / &

400 i/ //

200 A//
0

T v T T T 1

b
v
128 160 512 1024 2048 bits

Figure 6.1: Time to generate initial information

From the Figure 6.1 it is easy to see that the time needed to find the
values for elliptic curves is growing in an exponential way because of the

41

42 CHAPTER 6. RESULTS AND CONCLUSIONS

difficulty of finding a point over Zp2 to work with. On the other side, the
original Paillier cryptosystem, the time is growing in a linear way, so all the
same information was obtained much faster.

In the next Figure 6.2 we compare the time which triggers voting process
implemented with elliptic curves and with original in function of the number
of voters.

We can see that the time grows in function of the number of voters. In
both cases the systems are working with the same speed.

200 /
150
100 —fli—With EC

50 '//

0 T T T 1
100 200 400 800 1600 bits

ms

250

=—4—Without EC

Figure 6.2: Time with number of voters

6.2 Conclusions

We have implemented an homomorphic electronic voting system using Pail-
lier cryptosystem with elliptic curves. Since this cryptosystem has the ho-
momorphic property, an advantage of this e-voting scheme is that we need
just one decryption at the end of the voting process, corresponding to the
sum of all the votes.

In cryptographic protocols based on the discrete logarithm problem the
use of elliptic curves provide an important redaction of the key length, main-
taining the same level of security compared to the classical protocols. Nev-
ertheless, regarding our proposal we have realized that elliptic Paillier cryp-
tosystem does not help us to reduce the amount of bits required for security.
This is due to the fact that Paillier cryptosystem bases its security on the
integer factorization problem and composite residuosity problem. Thus, in
order to guarantee a suitable level of security we need to use primes p and ¢
of 1024 bits to generate the keys. Because of this, the initialization of pub-

6.3. FUTURE WORK 43

lic and private information for Paillier cryptosystem using elliptic curves is
slower, compared to its original version.

This way, we can say that elliptic Paillier cryptosystem is not, currently,
the best option for the electronic voting processes. That is why we leave
this project open for future work and improvements.

6.3 Future Work

After finishing the project we can define some options for future work:

e Make improvements for the elliptic Paillier cryptosystem, to hide some
public values and make it more secure.

e Implement any faster way to find the point over the curve Z .
e Implement MLS tests for the system.
e Compare our protocol with other homomorphic tallying proposals.

Moreover, the generated code can be used for the further work and for
implementing new systems.

44

CHAPTER 6. RESULTS AND CONCLUSIONS

Bibliography

1]

M.A. Cerverd, V. Mateu, J.M. Miret, F. Sebé, and J. Valera. An elliptic
curve based homomorphic remote voting system. RECSI 2014, 2014.

D. Chaum. Blind signatures for untraceable payments. Advances in
Cryptology: Proceedings of Crypto 82, pages 199-203, 1983.

T. ElGamal. A public-key cryptosystem and a signature scheme based
on discrete logarithms. IEEFE trans. Inform. Theory, pages 469-472.

S. Galbraith. Elliptic Curve Paillier Schemes. Journal of Cryptology
15, pages 129-138, 2002.

X. Lai. On the design and security of block ciphers. Phd thesis, ETH
Zurich, 1992.

V. Mateu. Implementacié d’un Sistema de votacié Sobre la xifra de
Paillier i Elgamal. Treball Final de Master, Universidad de Lleida,
20009.

V. Mateu. Votacié electronica amb recompte homomorphic. Treball
Final de Carrera, Universidad de Lleida, 2010.

V. Mateu, J.M. Miret, and F. Sebé. Verifiable encrypted redundancy for
mix-type remote electronic voting, LNCS 6866. EGOVIS 2011, pages
370-385, 2011.

NIST (National Institute of Standarts and Technology). AES (Ad-
vanced Encryption Standart). Federal Information Processing Standart
(FIPS), 2001.

NIST (National Institute of Standarts and Technology). Recommen-
dation for transitioning the use of cryptographic algorithms and key
lengths. Federal Information Processing Standart (FIPS), 2011.

US National Bureau of Standarts. DES (Data Encryption Standart).
Federal Information Processing Standart (FIPS), 1977.

45

46 BIBLIOGRAPHY

[12] P. Paillier. Public-key Cryptosystems Based on Composite Degree
Residuosity Classes. Procs of EUROCRYPT’99, pages 223-238, 1999.

[13] R. Rivest. The MD5 Message-Digest Algorithm. MIT LCS and RSA
Data Security, 1992.

[14] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digi-
tal Signatures and Public-Key Cryptosystems. Communications of the
ACM 21, no 2, pages 120-126, 1978.

