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This paper presents an approach based on the saddle-point approximation to study the equilibrium
interactions between small molecules and macromolecules with a large number of sites. For this
case, the application of the Darwin–Fowler method results in very simple expressions for the
stoichiometric equilibrium constants and their corresponding free energies in terms of integrals of
the binding curve plus a correction term which depends on the first derivatives of the binding curve
in the points corresponding to an integer value of the mean occupation number. These expressions
are simplified when the number of sites tends to infinity, providing an interpretation of the binding
curve in terms of the stoichiometric stability constants. The formalism presented is applied to some
simple complexation models, obtaining good values for the free energies involved. When
heterogeneous complexation is assumed, simple expressions are obtained to relate the macroscopic
description of the binding, given by the stoichiomeric constants, with the microscopic description in
terms of the intrinsic stability constants or the affinity spectrum. ©1999 American Institute of
Physics.@S0021-9606~99!50530-8#
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I. INTRODUCTION

The study of the equilibria and kinetics of the intera
tions between small moleceules and macromolecules
vides important information about many biological and e
vironmental processes; typically, the interactions betw
biological macromolecules~proteins, DNA! and small mol-
ecules are crucial for understanding many metab
routes;1,2 in the environment, the complexation of hea
metals with fulvic and humic compounds in soils or in na
ral waters determines to a large extent their bioavailabil
toxicity, and mobility.3,4

A macromolecule usually contains several complex
sites, to which small molecules can be bound, ranging fr
two sites~as is the case in many proteins!5 to a very large
number~as in polymeric complexation!.1,6,7 The presence o
a large number of complexing sites can enormously com
cate the interpretation of the experimental binding data
cause of the great number of chemical species and phys
chemical phenomena involved~heterogeneity, positive an
negative cooperativity, polyelectrolytic behavior, steric
fects, conformational changes, linkage or competition
fects, etc!.3,8

A general way to describe the complexation characte
tics starts defining ideal complexation as the model in wh
independent and homogeneous sites are assumed,5,9,10 and
considering the deviations from this ideal case, which
clearly recognized in the typical plots.11–13 Several magni-
tudes, such as the Hill coefficient,11 the binding capacity,
introduced by di Cera,2,5 or the activity coefficients of free

a!Author to whom correspondence should be addressed. Electronic
fmas@qf.ub.es; Fax: 34-93-402 12 31.
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and bound sites,9 have been used to quantify such deviation
The large number of sites present in many macrom

ecules complicates the fitting of the stoichiometric consta
if no hypothesis on the complexation model is imposed.
some cases the value of the stability constants obtained
nonlinear fitting of the Adair equation can be unstable a
depend strongly on the experimental errors.14 Some general
properties of different magnitudes related to coverage d
can be extremely useful for improving this fitting, such as t
symmetrical properties of the binding curve2,5 as well as
some properties of the activity coefficients of free and bou
sites and some characteristics of the average equilibr
function.9 Even when the fitting of the Adair equation
successful, much microscopic information is lost in the g
bal analysis of complexation. The free energy correspond
to a stoichiometric equilibrium is an average energy of
the microscopic species involved~with a fixed number of
bound small molecules!. The description of site-specific ef
fects demands resolution of more parameters than th
yielded by the global description. Local coverage data
required for a description of binding and linkage effects ta
ing place at individual sites of a multisite macromolecule15

Some approximate procedures to model the macro
lecular complexation processes have also been develo
The most common start assuming a model of complexat
In many cases, if positive cooperativity is not detected
model with heterogeneous and independent sites is assu
which involves superposition of local Langmuirian is
therms. Some procedures to fit the affinity spectrum with
a priori assumption of the discrete or continuous set of
finities involved have been developed.4,16,17 Klotz demon-
strated that all the complexation models can be expresse
a summation of Langmuirian isotherms, if imaginary stab
il:
8 © 1999 American Institute of Physics
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2819J. Chem. Phys., Vol. 111, No. 6, 8 August 1999 Complexation to macromolecules
ity constants are allowed.18 The demonstration is based o
the factorization of the macrocanonical partition functio
Nevertheless, as Klotz himself recognizes, imaginary sta
ity constants have no physical meaning.

Another important approximation, valid when the num
ber of sites is large enough, supposes that thermodynam
limit conditions can be applied to a macromolecule.1,9 Dar-
win and Fowler demonstrated19 that as the number of term
of a partition function increases, its value can be appro
mated by taking the maximum term. The assumption of th
modynamical limit conditions, although restrictive, allows
obtain analytical expressions which can be easily used t
the binding curve.

This work describes a treatment for systems with h
number of sites, obtaining the thermodynamical limit val
for the stoichiometric stability constants and a first correct
term suited for cases with a number of sites large enoug
apply the hypothesis on which the Darwin–Fowler meth
~saddlepoint approximation! is based. Section II introduce
the nomenclature and some definitions used in the w
Section III describes the application of the Darwin–Fow
method to macromolecular complexation. The discussion
the limiting case of very large number of sites and so
consequences of such approximation on the values of
stability constants and on the physical interpretation of
binding curve are included in Sec. IV. The results obtain
in Secs. III and IV are applied in Sec. V to simple comple
ations models; the homogeneous model with interactions
tween bound sites and the heterogeneous ideal model.
mathematical details are described in the Appendix.

II. THERMODYNAMICAL TREATMENT OF THE
COMPLEXATION OF A SMALL MOLECULE TO A
MACROMOLECULE

In order to avoid ambiguities, let us assume that:

~i! A complexing siteS is a set of coordinating groups o
a macromolecule,P, to which a small molecule~M!
~known in the biochemical literature as ligand! can
bind;

~ii ! M j P labels the chemical species with the same nu
ber j of bound ligands, regardless of the specific si
complexed;

~iii ! All full covered macromolecules have the same nu
ber,s, of bound ligands;

~iv! M, MS, and S label the so called formal species d
fined by their concentrationscM ~concentration of free
ligand!, cMS[( j 50

s jcM j P
~concentration of bound

ligand! and cS[S j 50
s (s2 j )cM j P

~concentration of
free sites of the macromolecule!;

~v! Ideal dilute solution behavior for the real speciesM j P
( j 50,...,s) is assumed.

Let us represent the sequential complexation of the m
romolecule as

M j 21P1M⇔
K j

M j P j51,...,s, ~1!
Downloaded 04 Mar 2013 to 193.144.12.130. Redistribution subject to AIP 
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where the stability constants for these processes,K j ( j
51,...,s), are known as stoichiometric constants.

The most common techniques used in the study of
macromolecular binding are based on measures ofcM . Once
this value and that of the total concentrations are known
possible to calculate the mean occupation number,n, the
coverage,u, or the average equilibrium function,Kc , at a
concentrationcM , as3,5

n~cM ![
cMS

cT,S
s, ~2!

u~cM ![
n

s
5

cMS

cT,S
, ~3!

Kc~cM !5
cMS

cMcS
5

1

cM
S n

s2n D5
1

cM
S u

12u D , ~4!

wherecT,S is the total concentration of macromolecular site
The equilibrium relationships corresponding to Eqs.~1!

allow us to relate the mean occupation number to a poly
mial in terms ofcM , the Adair equation,2,14 which can be
written as

n~cM !5
( j 51

s jb jcM
j

( j 50
s bjcM

j 5S ] ln J~cM !

] ln~cM ! D , ~5!

where the coefficients of the polynomial,bj[K1K2 ...K j ( j
51,...,s; b0[1), are the Adair coefficients, andJ(cM)
[( j 50

s bjcM
j is the macrocanonical partition function. Th

Adair coefficients lead directly to the stoichiometric co
stants asK j5(bj /bj 21).

At very low concentrations of the complexing agent,
complexation systems behave like the ideal one.9,20 The con-
centration of the formal species do not differ among differe
complexation models, and the average equilibrium funct
tends to a constant given by

lim
cM˜0

Kc~cM ![K. ~6!

Because of this limiting behavior, a formalism in whichK
plays the role of a thermodynamical constant for the proc
M1S⇔MS has been developed, the activity coefficients
formal species relating the concentration of formal specie
the concentration that would have been present if the c
plexation had been ideal. Moreover, at very high concen
tions of the complexing agent, the average equilibrium fu
tion tends to

lim
cM˜`

Kc~cM ![sKs , ~7!

which allows us to compute the last stoichiometric stabil
constantKs , if s is known.

It has also been reported9 that the macrocanonical part
tion function,J(cM), is in fact a polynomial of the produc
KcM . Therefore,K is a normalization constant for the coe
ficients of the macrocanonical partition function, and a n
set of coefficients$aj% can be defined as

bj[ajK
j ~8!

so that$aj% are independent ofK. Thus, Eq.~5! can always
be rewritten in terms of$aj% if a suitable change of the
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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2820 J. Chem. Phys., Vol. 111, No. 6, 8 August 1999 Garcés, Mas, and Puy
concentration scale is chosen. Therefore, systems with
ferentK can be compared and reduced to the caseK51 with
a suitable election of the concentration units. In the follo
ing we assume thatK51 without loss of generality.

For ideal complexation, the expressions forK j and bj

reduce to5,9

bj
id5S s

j DK j ; aj
id5S s

j D ; K j
id5

s2 j 11

j
K, ~9!

where the superscript~id! refers to the ideal complexatio
case. Any complexation model can be tackled by defining
excess equilibrium constantK j

E as

K j[K
s2 j 11

j
K j

E ~10!

and, labelingD jG
0 the standard Gibbs energy for the com

plexation equilibrium of thej-ligand,

D jG
052RT ln K j ~11!

an excess Gibbs energy can defined as

D jG
E[D jG

02~D jG
0! id52RT ln K j

E ~12!

indicating the deviation from the ideal complexation case
The Gibbs energy involved in the binding ofj ligands to

the naked macromolecule is given by

Gj
0[(

i 51

j

D iG
052RT ln bj . ~13!

Finally, we will refer to the binding capacity,B(cM), a
function of cM introduced by di Cera2,5 and defined as

B~cM ![
dn

d ln cM
. ~14!

Di Cera has proved5 that the functionB is always positive,
and an increase or decrease ofcM leads to an increase o
decrease ofB, respectively. In fact, the binding capaci
plays the role of a physical response function such as
capacity or compressibility, and its positive character is
lated to the stability principles embodied by the second
of thermodynamics.21

III. APPLICATION OF THE SADDLE POINT
APPROXIMATION TO THE DETERMINATION OF
EQUILIBRIUM CONSTANTS

We are interested in obtaining simple approximate
pressions forbj which can be useful to avoid unstabilities
the fitting of the Adair equation~5!.14 For high s values, a
usual way to deal with problems in statistical mechanics is
apply the classical approximation of Darwin and Fowler19

which allows a drastical simplification of the expressio
involved.

Let us integrate expression~5! for the mean number o
occupation. Thus,

J~cM ![(
j 50

s

bjcM
j 5exp~sF~cM !!, ~15!

where
Downloaded 04 Mar 2013 to 193.144.12.130. Redistribution subject to AIP 
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F~cM ![E
0

cM u~cM !

cM
dcM5E

2`

ln c

u~cM !d ln cM . ~16!

Equations~15! and ~16! relate the macrocanonical partitio
function J at a concentrationcM to the area covered by th
curveu(cM)/cM vs cM .

The Wyman integral equation2,5 can be easily derived
from Eqs. ~15! and ~16!. The integration, by parts, of Eq
~16! leads to

lnS J

cM
n D 52E

0

n

ln cMdn ~17!

which in the limit of cM˜` yields bs ,

ln bs52E
0

s

ln cMdn. ~18!

Equation~18!, known as the Wyman integral equation ind
cates thatbs can be obtained from the area of the curve lncM

vs n.
We are now trying to extend the Wyman integral E

~18! for bs to anybj . SinceJ(cM) is a polynomial incM ,
the coefficients$bj% can be expressed using the Laure
development22 as

bj5
1

2p i R exp~sF~z!!

zj 11
dz, ~19!

wherez is a complex variable and the integration takes pla
over a path containingz50. Let us definef j (z) as

f j~z![
exp~sF~z!!

zj 11
. ~20!

The Appendix shows that ifz takes values on a comple
plane, the functionf j (z) has a local minimum in the rea
direction and a local maximum in the imaginary direction
z5cj 11 ~wherecj 11 indicates the value ofcM corresponding
to n5 j 11) wheneverj ,s21; i.e., z5cj 11 is a saddle
point. This is an interesting mathematical property beca
the integration~19! can be easily performed on a circle wit
centerz50 and radiusr 5cj 11 ; sincez5cj 11 is the highest
maximum on such a circle~see Appendix!, the major contri-
bution to the value ofbj , is located close toz5cj 11 , in the
imaginary direction.

Performing the integral~19! as described in the Appen
dix Eq. ~A14! leads to the following value forbj :

ln bj52E
0

j 11

ln cMdn2
1

2
lnS 2p

1

cj 11
2 F dn

d ln cM
G

cM5cj 11

D ,

~21!

which, using the definition ofbj in terms ofK j , becomes
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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2821J. Chem. Phys., Vol. 111, No. 6, 8 August 1999 Complexation to macromolecules
ln K j52E
j

j 11

ln cMdn

2
1

2
ln5 S cj

cj 11
D 2

S dn

d ln cM
D

cM5cj 11

S dn

d ln cM
D

cM5cj

6 . ~22!

Expression~22! provides a method to obtain an estim
tion of the firsts22 stoichiometric stability constants from
experimental data of lncM vs n. The first term in the rhs of
Eq. ~22! corresponds to the area under the curve lncM vs the
mean occupation number,n, betweenn5 j and n5 j 11.
Therefore, for a large number of binding sites, the calcu
tion of the stoichiometric constants only needs a small in
val of points aroundn5 j . The constantsKs21 andKs can-
not be calculated by this method because the functionf j (z)
does not have a saddle point forj 5s21 and j 5s as de-
scribed in the Appendix. Obviously, bothKs andbs can be
calculated as indicated in Eqs.~7! and ~18!, respectively.
When Ks and bs are known, it is possible to evaluate th
values ofbs21 , and alsoKs21 , the remaining constant.

IV. THERMODYNAMICAL LIMITING CONDITIONS
„s˜`…

For many systems, the number of sites per macrom
ecule is high enough to obtain a good description taking
limit s˜`, an assumption which is known as the thermod
namical limit. We will particularize the results~21! and~22!
to these conditions in order to deduce simple expressions
the set of stoichiometric constants of complexation and
provide a physical interpretation of the binding curve.

A. An expression for the set of stability constants
ˆK j‰ in the limit s˜`

In the limit s˜`, the second term of the rhs of Eq.~22!
disappears. This is easily seen if Eq.~22! is written in terms
of u and it is divided bys. For large values ofs, it becomes

lim
s˜`

1

s
ln K j52 lim

s˜`

1

s

D jG
0

RT
.2E

u j

u j 11
ln cMdu, ~23!

and the standard Gibbs energy,D jG
0, can be calculated by

computing the area under the curve lncM vs n or u between
the points (lncj , n5j or u j ) and (lncj11, n5j11 or u j 11).

Furthermore, for very large values ofs, expression~23!
can be simplified applying the mean value theorem to
integral

E
u j

u j 11
ln cMdu5

1

s Ej

j 11

ln cMdv

5
1

s
$~12w!ln cj1w ln cj 11%; 0<w<1.

~24!
Downloaded 04 Mar 2013 to 193.144.12.130. Redistribution subject to AIP 
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Since the interval of integration in Eq.~24! decreases ass
increases, we can assumew'0 for large values ofs; there-
fore, Eq.~23! becomes

lim
s˜`

ln K j52
D jG

0

RT
.2 ln@cM#n5 j52 ln cj . ~25!

Hence, under thermodynamical limiting conditions, the va
of the standard Gibbs energy associated withK j is the oppo-
site of the logarithm ofcj . Expression~25! can also be re-
written as

lim
s˜`

K j5F 1

cM
G

n5 j

5
1

cj
~26!

providing a very simple method for obtaining the set of st
chiometric constants and their corresponding Gibbs ener
in a system with a large number of sites.

Some remarks of the result~26! should be emphasized

~i! This result provides a simple physical interpretation
the inverse of the binding curve (lncM vs v); the
value of lncM at n5 j gives directly the standard
Gibbs energy involved in the complexation of thej th
ligand,D jG

0 ~see Fig. 1!. Likewise, a plot of 1/cM vs
n leads directly, for integer values ofn, to the stoi-
chiometric stability constants.

~ii ! If thermodynamical limiting conditions are fulfilled
K j must decrease withj for any complexation model
reaching the values provided by Eq.~26!. Now, we
remark the generality of this result. Actually, ifK j

increases withj for s˜`, (K j 11 /K j )>1, Eq. ~26!
yieldscj 11<cj . This means that the free ligand con
centration corresponding ton5 j 11 is lower than the
value ofcM corresponding ton5 j and leads immedi-
ately to a negative value of the slopen vs lncM (B
,0). Therefore, Eq.~26! is directly related to the ther
modynamical stability condition (B.0) for s˜`.

FIG. 1. Schematic plot of the inverse of the binding curve, lncM vs n. The
value of lncM at the integer values ofn5 j yields directly, in the limit
s˜`, 2 ln Kj .
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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~iii ! According to Eq.~25!, we can write

ln Kj112ln Kj5ln cj2ln cj11'2Fd ln cM

dn G
n5j

52F1BG
n5j

~27!
and
Dj11G

02DjG
0

RT
52F1BG

n5j

. ~28!

Thus, for s˜`, the inverse of theB value can be
interpreted as a measure of the difference between
affinity of the ligandj 11 and the ligandj, i.e., as the
standard Gibbs energy needed to complex a n
ligand, relative to the standard Gibbs energy nee
by the last complexed one.

B. Relationship between the average equilibrium
function, K c , and the stoichiometric constants K j in
the limit s˜`

According to Eq.~10!,

K j
E5

j

s2 j 11

K j

K
5

j /s

12 j /s11/s

K j

K
. ~29!

For s large enough the term 1/s can be neglected

lim
s˜`

K j
E.

j

s2 j

K j

K
~30!

and using Eq.~26! for the value ofK j and Eq.~4! for the
average equilibrium function,

lim
s˜`

K j
E.

1

K F 1

cM

n

s2nG
cM5cj

5FKc

K G
cM5cj

. ~31!

In terms ofD jG
E, Eq. ~31! is rewritten as

lim
s˜`

D jG
E52RTF lnS Kc

K D G
cM5cj

. ~32!

Thus, for a high enoughs value, that ofKc /K when the
mean number of occupation is an integer is merely the va
of the excess stability constantK j

E , and its logarithm is pro-
portional to the excess Gibbs energy.

V. APPLICATION TO SOME PARTICULAR
COMPLEXATION MODELS

In this section, we apply the results above described
some simple models of complexation; an homogeneous c
plexation with interaction between sites, and an hetero
neous case of complexation without interaction betwe
sites. Both cases are widely used in the literature.

A. Complexation with interaction between neighboring
sites

A simple model to describe systems with interaction b
tween bound species considers a fixed interaction enerd
between the nearest neighboring occupied sites~1D Ising
model!. The excess stability constant~12!, within the 1D-
mean-field approximation, is given by9,23–25
Downloaded 04 Mar 2013 to 193.144.12.130. Redistribution subject to AIP 
he

w
d

e

to
-

e-
n

-
K j

E5expS 2bd
2~ j 21!

s21 D , ~33!

whereb5(1/kBT), thus showing thatK j depends exponen-
tially on j.

FIG. 2. Exact values@in dotted lines with markerh ~empty square!# of the
Gibbs energiesGj

0 ~a!, increments of Gibbs energies (D jG
0) ~b!, and excess

Gibbs energies (D jG
E) ~c!, for the interaction model of complexation with

interaction parameterbd52 ~negative cooperativity!, number of sitess
520 andK51 M21, compared with those obtained by using the differe
approximations proposed in this work; markerd ~filled circle! for approxi-
mation given by Eqs.~21! ~a! and ~22! ~b!; markern ~empty triangle! for
approximations given by Eqs.~25! ~b! and ~32! ~c!.
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As described in Sec. II, results obtained for systems w
any value ofK can be compared with those present here
suitable change of the concentration scale is performed. AK
is merely a concentration scale factor we have usedK51 in
the present calculations.

As usual, two contributions~an ‘‘enthalpic’’ or ‘‘ener-
getic’’ effect and an ‘‘entropic’’ effect! can be considered in
Gj

0 (5H j
02TSj

0) and D jG
0 (5D jH

02TD jS
0). Taking K

51, the enthalpic contribution only includes the effect of t
lateral interactions~positive for repulsive interactions an
negative for attractive ones!. Concerning the entropic contri
bution, while j ,s/2,Sj

0 increases asj increases and thenSj
0

decreases forj .s/2 because the number of accessible m
crostates for the binding ofj ligands to the naked macromo
ecule decreases. Accordingly,D jS

0 is a monotonically de-
creasing function taking positive values forj ,s/2 and
negative ones forj .s/2 regardless the sign ofd.

Figures 2~a!, 2~b!, and 2~c! show the exactGj
0, D jG

0,
andD jG

E ( j 51,...,s22) values obtained with Eq.~33! for a
case with repulsive interactions (bd52) ands520 ~as an
estimation of the thermodynamic limit conditions! together
with the results obtained from the approximate expressi
~21!, ~22! proposed in this work and their corresponding lim
its whens˜`, Eqs.~25! and~32!. The exactGj

0 values are
in good agreement to those obtained with the approxim
expression~21!, as Fig. 2~a! shows. A good estimation is
also obtained forD jG

0 ~related to the stoichiometric equilib
rium constant,K j ) using the approximate expressions~22!
and ~25! in Fig. 2~b! and a comparison between the exa
D jG

E values and those obtained from the average equ
rium function, Kc , by using the approximate expressio
~32!, is shown in Fig. 2~c!. Decreasings ~see Fig. 3, where
the same calculations as Fig. 2 have been performed f
smaller number of sites,s510), the thermodynamical limi
approximate expressions begin to deviate, especially Eq.~25!
for D jG

0 @Fig. 3~b!#, but the corrective term given by Eq
~21! for Gj

0 @Fig. 3~a!# and by Eq.~22! for D jG
0 @Fig. 3~b!#,

yield still accurate results.
As Figs. 2 and 3 correspond to a repulsive case, for

values ofj, Gj
0 decreases with increasingj because the en

tropic contribution predominates over the enthalpic o
whereas for intermediate and large values ofj, the repulsive
interaction becomes more important andGj

0 increases even
to positive values. Accordingly,D jG

0 andD jG
E always in-

crease withj and, therefore,K j andKc always decrease with
j, as expected.

When positive cooperativity is considered~see Fig. 4,
where bd521) only the entropic contribution forj .s/2
contributes to increaseGj

0. So,Gj
0 decreases with increasin

j until a j value larger than that found in the repulsive ca
For this attractive case, the agreement between the rea
approximate values ofGj

0 is not so good@Fig. 4~a!# as it is in
the repulsive case~Fig. 2!, especially for the lowest and th
highest values ofj. This can be explained from the relation
ship between the coverageu and the ligand concentratio
cM , which under thermodynamical limiting conditions is

u

KcM
5~12u!exp~22bdu!. ~34!
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The conditionB.0 @the binding capacity defined in Eq
~14!#, applied to Eq.~34!, leads to

bd.22 ~35!

which indicates that the system is thermodynamically sta
for s˜` only whenbd.22. This is a consequence of th
use of the mean-field approximation~which implies a phase
transition atbd522 for the 1D-Ising model!.19,21Since ap-
proximations~21!–~22!, ~25!, and ~32! have been deduce
using the thermodynamic limit as the starting point, th
values will diverge from the real ones as we approachbd
522, since the model used leads to a non realistic desc
tion of the system ifbd,22 ass increases. This difficulty
can be avoided taking into account the correlations betw
the interactions of different ligands in the macromolecu
which we neglected with the mean-field approximation.

B. Heterogeneous complexation: Relationship
between the stoichiometric and the intrinsic stability
constants

Due to its direct microscopic interpretation, the hete
geneous model is widely used especially when there is s
previous physical information suggesting the considerat
of sites with different affinities.

Let us consider a system withm kinds of sites, and letsi

be the number of sites of typei with an intrinsic stability

FIG. 3. As in Fig. 2~a! and Fig. 2~b! but with the number of sitess510.
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constantki ( i 51,...,m). Assuming a Langmuirian local iso
therm, the mean occupation number can be related to
ligand concentration, without assuming thermodynami
limiting conditions, by

n~cM !5(
i 51

m

si

kicM

11kicM
; (

i 51

m

si5s. ~36!

The relationship between the stoichiometric consta
and the intrinsic stability constants described by Klotz10 is
cumbersome for larges values. Nevertheless, expressi
~25!, valid for the stoichiometric stability constants in th
limit s˜`, together with Eq.~36!, provide a very simple
expression for such relationship, valid for larges values,

lim
s˜`

K j5
1

cj
5(

i 51

m
si

j

ki

11kicj
. ~37!

Equation~37! indicates that the stoichiometric stabilit
constantsK j can be considered as an average of the intrin
stability constants,

lim
s˜`

K j5
1

j (
i 51

m

wi , j ki ;

~38!

wi , j[
si

11kicj
5si~12u i , j !5si2n i , j ,

FIG. 4. As in Fig. 3 but withbd521 ~positive cooperativity! ands520.
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wherewi , j , the weighting factors, corresponds to the me
number of free sites of thei th type at n5 j and u i , j

[(kicM)/(11kicM)cM5ci
and n i , j[siu i , j are the coverage

and the mean occupation number of the sites of typei at the
free ligand concentrationcj .

Thus, K j are calculated as an average of the intrin
stability constantski with a weighting factor given by the
mean number of free sites of typei at the concentrationscj ,
respectively. This indicates that the stoichiometric stabi
constant of the binding of an additional ligand to a mac
moleculeP is an average of the intrinsic stability constan
not yet occupied.

The relationship betweenKc and the intrinsic stability
constants is easily obtained. From Eqs.~4! and ~36! it is
obtained26

Kc~cM !5
1

cM
S n

s2n D5
1

s2n (
i 51

m

si

ki

11kicM
5(

i 51

m

xi~cM !ki ,

~39!

wherexi[(si2n i)/(s2n) provided that( i 51
m xi51, andn i

is the mean occupation number of the sites ofi th type at the
concentrationcM .

This expression holds independently of thes-value and
indicates that the average equilibrium constant is an ave
of the intrinsic stability constants with a weighting fact
given by the fraction of mean number of free sites of typi
with respect to the total of free sites at the concentrationcM .

Figures 5~a! and 5~b! consider a heterogeneous syste
with two types of sites with the same probability (s15s2),
but with a different total number of sitess, 16 and 30, re-
spectively. The approximate expressions~22! and ~25! are
used to reproduce the value of the free energies involved
general, a good accordance between the exact results
those given by~22! and ~25! is obtained, especially for the
highest number of sites (s530). As expressions~22! and
~25! work out the results for the stoichiometric constan
from the plot 1/cM vs n @Fig. 1~b!#, care must be taken to
minimize the experimental error in such plots, because t
have direct influence on the stoichiometric constants.

Regarding the results described above:

~i! Equation~37! relatesK j to the intrinsic stability con-
stantski . Replacingcj in Eq. ~37! in terms ofK j , we
have

15(
i51

m
si

j

ki

ki1Kj
. ~40!

Expression~40! relates the Adair approach, a macr
scopic description of the binding, to a microscopic
local formalism widely used in complexation prob
lems; the affinity spectrum method@usually, in this
last formalism, the summation involved in Eq.~40! is
replaced by an integral when a continuous distribut
of intrinsic stability constants is assumed#.

~ii ! In some cases, it is reasonable to replace the lo
Langmuirian isotherm in Eq.~36! by other local iso-
therms ~for instance, the Fowler–Guggenheim
Frunkim isotherm! of the kind f (ki ,cM). Then Eq.
~36! could be generalized as
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n5(
i51

m

si f~ki ,cM!. ~41!

In such a case, a relationship between microsco
and macroscopic parameters like Eq.~40! can also be
written as

15(
i51

m
si

j
fSki ,

1

Kj
D ~42!

which generalizes the relationship between the Ad
approach with the affinity spectrum method given
Eq. ~40! for a wide variety of local isotherms used.

VI. CONCLUDING REMARKS

The Darwin–Fowler method, a classical result of sta
tical thermodynamics, has been reviewed in order to ob
approximate expressions for the stoichiometric constant
the complexation of small ligands to macromolecules wit
number of sites so high that thermodynamical limiting co
ditions are used. The Darwin–Fowler method is based on

FIG. 5. Exact increments of Gibbs energies (D jG
0) for a heterogeneous

system with two kinds of independent sites (k1510 M21, k25104 M21),
compared with those obtained by using the different approximations
posed in this work with markers as in Fig. 2~b! ~a! s15s258; ~b! s15s2

515.
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so-called saddle point approximation. The goodness of s
approximation to analise complexation problems is stud
in this work.

Very simple expressions for the value of the firsts22
Gibbs energies of the sequential complexation proces
have been deduced. These Gibbs energies are calculate
rectly from the binding curve without making any hypothes
on the model of complexation involved, and contain tw
contributions; the first one is an integral term correspond
to the area under the curve lncM vs the mean occupation
number betweenj and j 11. The second contribution, whic
can be considered as a corrective term, depends on the b
ing curve derivatives on the points with an integer value
the mean occupation number. This last term can be negle
for high s values.

The value of the stoichiometric stability constantsK j

tends to the inverse of the free ligand concentration at
point of mean occupation number equal toj as the number of
sitess increases. This provides a simple interpretation of
average equilibrium function,Kc , which takes the value o
the excess stability constant,K j

E , at integer values of the
mean occupation number (n5 j ).

The expressions derived are applied to a simple het
geneous complexation case and to an homogeneous
plexation with interaction between bound sites. The res
obtained reproduce quite well the real values of the stab
constants, and the accuracy increases ass increases.

For the heterogeneous case, in the limits˜`, we have
derived very simple expressions to relate the stoichiome
stability constants~a macroscopic description of the com
plexation! with the intrinsic or microscopic stability con
stants represented in the affinity spectrum.

APPENDIX: APPLICATION OF THE SADDLE POINT
APPROXIMATION TO THE MACROMOLECULAR
BINDING

Coefficientsbj of the macrocanonical partition functio
are obtained as the result of the integral~19!

bj5
1

2p i R
C

exp~sF~z!!

zj 11
dz, ~A1!

wherez takes values in the complex plane andC is a closed
path on this plane aroundz50.

We have defined an auxiliar functionf j (z) in Eq. ~20!
as

f j8~z![
exp~sF~z!!

zj 11 5
J~z!

zj 11 5
( i 50

s biz
i

zj 11

5(
i 50

s

biz
i 2 j 21. ~A2!

Equation ~A2! indicates that the functionf j (z), the inte-
grand of Eq.~A1!, is an analytical function except forz
50. Therefore,f j (z), is an harmonic function22

S ]2

]x2 1
]2

]y2Df j~z!50, ~A3!

o-
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wherex andy indicate, respectively, the real and imagina
components of the complex variablez.

Restrictingz to real values, whereasj ,s21,f j (z) has
a minimum along thisx-axis at some pointz5zj because
exp(sF(z)) is a monotonically increasing function~a polyno-
mial of degrees with all the coefficientsbi being positive!
and 1/zj 11 is a monotonically decreasing function along t
real axis. Hence Eq.~A3! for z5zj leads to

f j8~zj !5S df j

dz D
z5zj

50; S ]2f j

]x2 D
z5zj

.0;

~A4!S ]2f j

]y2 D
z5zj

,0; ~ j 50,...,s21!,

where the first equality is derived from the condition of e
treme atz5zj , the second indicates the presence of a m
mum in the real direction and the last condition comes fr
Eq. ~A3!.

f j (z) is an analytical function and satisfies the Cauch
Riemann equations,22 which ensures that the condition o
extreme for f j (zj ) yields to (]f j /]x)z5zj

52 i (]f j /]y)z5zj
50, which together with the last inequa

ity of Eq. ~A4! indicates the simultaneous presence o
maximum for f j (z) along the imaginary direction atz
5zj . Therefore,zj is a saddle point on the complex plan
For j 5s21 or j 5s there is no minimum forf j (z) along the
real axis, since functionf j (z) decreases monotonically.

It is easy to compute the real valuezj corresponding to
the minimum of f j (z). The condition of extreme,f j8(z
5zj )50, using Eq.~A2! becomes

S ] ln J~z!

] ln z D
z5zj

5 j 11, ~A5!

which, taking into account that the lhs~[left hand side! of
Eq. ~A5! corresponds to the mean occupation number,n(5),
indicates that atz5zj , n5 j 11. Thus,zj corresponds to the
concentrationcM for which n5 j 11, labeled ascj 11 ,

zj5cj 11 ; n~cj 11!5su~cj 11!5 j 11. ~A6!

To calculate the second derivative off j (z) at z5zj we
use the auxiliar function

gj~z![
1

s
ln f j~z!, ~A7!

leading to

f j9~z5cj 11!5sgj9~cj 11!f j~cj 11!

5sgj9~cj 11!exp$sgj~cj 11!%, ~A8!

where it has been used the condition of extremef j8(cj 11)
5gj8(cj 11)50.

Equation~A8! gives the concavity off j (z) at z5zj . It
indicates that the concavity increases withs leading to a
sharper maximum on the imaginary direction and a dee
minimum on the real direction appear. If we choose the c
tour of integration of Eq.~A1! to be a circle aboutz50 with
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radiuscj 11 , the contour will pass throughzj in the imagi-
nary direction, in which point and direction the integrand h
an extremely sharp maximum.

This is the highest maximum on the circle. The absol
value off j (z) over the circle withuzu5cj 11 is

uf j~z!u5
1

uzu j 11 U(i 50

s

biz
iU, ~A9!

which reaches its maximum value when all the terms
real. As all thebi coefficients are real and positive, all th
terms are also real and positive if and only ifz5zj . Hence,
f j (z) reaches the highest maximum along the circleuzu
5cj 11 over the real axis.

As there is no maximum comparable in height along
contour, the main contribution to the integral~A1! comes
from the neighborhood ofcj 11 . Expandinggj (z) aroundz
5cj 11 ,

g~z!5g~cj 11!1 1
2g9~cj 11!~z2cj 11!21¯ ~A10!

replacing Eq.~A10! in Eq. ~A1!, and using the polar form o
z anddz, providing that the circle of integration has the r
dius uzu5cj 11 (z5cj 11eiw, dz5 ic j 11eiwdw), the integral
~A1! becomes

bj>
1

2p E
2p

p

Re$exp~s$gj~cj 11!

1 1
2gj9~cj 11!~cj 11eiw2cj 11!2%!cj 11eiw%dw, ~A11!

where it has been taken as the real part sincebj is real.
From the definition ofg(z) and Eq.~A2!, g9(cj 11) can

be evaluated as

g9~cj 11!5
1

s

1

cj 11
2 S dn

d ln cM
D

cM5cj 11

. ~A12!

If the integral ~A11! is performed only in a small interva
aroundcj 11 ,eiw can be replaced by 11 iw, and taking into
account that the only relevant contribution to the integra
located in this small interval, the limits of integration can
extended to~2`, `!.

Then, substituting Eq.~A12! into the integral~A11!, the
evaluation of the resulting quadratic integral yields

ln bj52E
2`

ln cj 11
n~cM !d ln cM2~ j 11!ln cj 11

2
1

2
lnH 2p

1

cj 11
2 S dn

d ln cM
D

cM5cj 11

J ~A13!

and integrating the first term of the rhs of Eq.~A13! by parts,
this equation can be written as

ln bj52E
0

j 11

ln cM dn

2
1

2
lnH 2p

1

cj 11
2 S dn

d ln cM
D

cM5cj 11

J . ~A14!
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GLOSSARY OF SYMBOLS

Latin letters

aj dimensionless Adair coefficient
bj Adair coefficient
B binding capacity
cM j P

molar concentration of speciesM j P ( j 51,...,s)

cj molar concentration of free ligands whenv5 j
cs molar concentration of free sites
cM molar concentration of free ligands
cMS molar concentration of bound sites
cT,S total molar concentration of sites~free and

bound!
f (k,c) generalized local isotherm for complexation
F(c) auxiliar function related to the logarithm of th

macrocanonical partition function
gj (z) auxiliar complex function related tof j (z)
Gj

0 standard Gibbs energy necessary to complej
ligands

D jG
0 standard Gibbs energy for the process of co

plexation of thej th ligand
D jG

E excess Gibbs energy for the process of compl
ation of thej th ligand

i specific kind of site in heterogeneous comple
ation; i 51,...,m

j number of bound ligands
kB Boltzmann constant
ki intrinsic stability constant of a complexing site o

the i th type
K thermodynamical stability constant for form

species in molar concentration scale~in M21

units!, which coincides with the limit ofKc when
cM˜0

Kc average equilibrium constant
K j stoichiometric stability constant in an ideal dilu

solution ~from M j 21P to M j P), ~in M21 units!
K j

E excess equilibrium constant
m number of different kind of sites in heteroge

neous macromolecule
M free ligand
M j P macromolecule species withj bound ligands
P naked macromolecule
R gas constant
s total number of sites in one macromolecule
si number of sites ofi th type in the heterogeneou

macromolecule
T absolute temperature
wi , j mean number of the free sites of thei th type
x real part of the complex variablez
xi fraction of free sites of thei th type with respect

to the total number of free sites
y imaginary part of the complex variablez
z complex variablez5x1yi

Greek letters

b51/kBT inverse of the thermic energy
d interaction energy between adjacent bou

ligands
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f j (z) auxiliar complex function related to the comple
macrocanonical partition function

w phase of a complex variable~dimensionless rea
variable!

n mean occupation number
n i mean occupation number of sites of thei th type
n i , j mean occupation number of sites of thei th type

whenn5 j
u coverage or fraction of occupied sites in a ma

romolecule
u i , j coverage of sites of thei th type whenv5 j
J macrocanonical partition function of the syste

$M j P; j 50,...,s%

Superindices

id ideal
0 standard state
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23M. V. Joséand C. Larralde, Math. Biosci.58, 159 ~1982!.
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