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This paper presents an approach based on the saddle-point approximation to study the equilibrium
interactions between small molecules and macromolecules with a large number of sites. For this
case, the application of the Darwin—Fowler method results in very simple expressions for the
stoichiometric equilibrium constants and their corresponding free energies in terms of integrals of
the binding curve plus a correction term which depends on the first derivatives of the binding curve
in the points corresponding to an integer value of the mean occupation number. These expressions
are simplified when the number of sites tends to infinity, providing an interpretation of the binding
curve in terms of the stoichiometric stability constants. The formalism presented is applied to some
simple complexation models, obtaining good values for the free energies involved. When
heterogeneous complexation is assumed, simple expressions are obtained to relate the macroscopic
description of the binding, given by the stoichiomeric constants, with the microscopic description in
terms of the intrinsic stability constants or the affinity spectrum. 1899 American Institute of
Physics[S0021-960809)50530-9

I. INTRODUCTION and bound sitehave been used to quantify such deviations.
The large number of sites present in many macromol-
The study of the equilibria and kinetics of the interac- ecules complicates the fitting of the stoichiometric constants
tions between small moleceules and macromolecules praf no hypothesis on the complexation model is imposed. In
vides important information about many biological and en-some cases the value of the stability constants obtained by a
vironmental processes; typically, the interactions betweemonlinear fitting of the Adair equation can be unstable and
biological macromoleculegroteins, DNA and small mol-  depend strongly on the experimental errtrSome general
ecules are crucial for understanding many metaboligroperties of different magnitudes related to coverage data
routesi? in the environment, the complexation of heavy can be extremely useful for improving this fitting, such as the
metals with fulvic and humic compounds in soils or in natu-symmetrical properties of the binding cufveas well as
ral waters determines to a large extent their bioavailability some properties of the activity coefficients of free and bound
toxicity, and mobility>* sites and some characteristics of the average equilibrium
A macromolecule usually contains several complexingfunction® Even when the fitting of the Adair equation is
sites, to which small molecules can be bound, ranging fronsuccessful, much microscopic information is lost in the glo-
two sites(as is the case in many protejngo a very large  bal analysis of complexation. The free energy corresponding
number(as in polymeric complexatiort®’ The presence of to a stoichiometric equilibrium is an average energy of all
a large number of complexing sites can enormously complithe microscopic species involvegsvith a fixed number of
cate the interpretation of the experimental binding data bebound small molecul¢s The description of site-specific ef-
cause of the great number of chemical species and physicgects demands resolution of more parameters than those
chemical phenomena involvetheterogeneity, positive and yielded by the global description. Local coverage data are
negative cooperativity, polyelectrolytic behavior, steric ef-required for a description of binding and linkage effects tak-
fects, conformational changes, linkage or competition efing place at individual sites of a multisite macromolectile.
fects, et¢.>® Some approximate procedures to model the macromo-
A general way to describe the complexation characteristecular complexation processes have also been developed.
tics starts defining ideal complexation as the model in whichThe most common start assuming a model of complexation.
independent and homogeneous sites are asstfi€dind  In many cases, if positive cooperativity is not detected, a
considering the deviations from this ideal case, which arenodel with heterogeneous and independent sites is assumed,
clearly recognized in the typical plots-*® Several magni- which involves superposition of local Langmuirian iso-
tudes, such as the Hill coefficiett,the binding capacity, therms. Some procedures to fit the affinity spectrum with no
introduced by di Cer; or the activity coefficients of free a priori assumption of the discrete or continuous set of af-
finities involved have been develop&tf” Klotz demon-
aAuthor to whom correspondence should be addressed. Electronic maibtrated that all the complexation models can be expressed as
fmas@qf.ub.es; Fax: 34-93-402 12 31. a summation of Langmuirian isotherms, if imaginary stabil-
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ity constants are allowel. The demonstration is based on where the stability constants for these processes(j

the factorization of the macrocanonical partition function.=1,...s), are known as stoichiometric constants.

Nevertheless, as Klotz himself recognizes, imaginary stabil- The most common techniques used in the study of the

ity constants have no physical meaning. macromolecular binding are based on measureg,0fOnce
Another important approximation, valid when the num- this value and that of the total concentrations are known it is

ber of sites is large enough, supposes that thermodynamicpbssible to calculate the mean occupation numberthe

limit conditions can be applied to a macromolectfeDar-  coverage,d, or the average equilibrium functioi., at a

win and Fowler demonstrat&tithat as the number of terms concentratiorcy, , as™

of a partition function increases, its value can be approxi-

mated by taking the maximum term. The assumption of ther-  ,(¢,,)= Clss, 2

modynamical limit conditions, although restrictive, allows to Crs

obtain analytical expressions which can be easily used to fit v Cus

the binding curve. olem)=<= ()]
This work describes a treatment for systems with high TS

number of sites, obtaining the thermodynamical limit value cws 1 ( v 1/ 6

for the stoichiometric stability constants and a first corrective Ke(Cm) = CuCe  Cur ( s—v cu (m) ' 4)

M*S M M

term suited for cases with a number of sites large enough to ) ) )
apply the hypothesis on which the Darwin—Fowler methodWherecy g is the total concentration of macromolecular sites.
(saddlepoint approximatioris based. Section Il introduces The equilibrium relationships corresponding to E(s.

the nomenclature and some definitions used in the work@/low us to relate the mean occupation number to a polyno-
Section 11l describes the application of the Darwin—FowlerMial in terms ofcy,, the Adair equatio;** which can be
method to macromolecular complexation. The discussion of/fttén as

the limiting case of very large number of sites and some Elljbjcl}w (&InE(CM))

consequences of such approximation on the values of the wv(cy)= E]S bl
j=0Mjbm

)
stability constants and on the physical interpretation of the aIn(cw)
binding curve are included in Sec. IV. The results obtainedvhere the coefficients of the polynomidl,=K,K,...K; (]
in Secs. Ill and IV are applied in Sec. V to simple complex-=1,...s; by=1), are the Adair coefficients, ang&(cy)
ations models; the homogeneous model with interactions bo:—EjS:objc{v| is the macrocanonical partition function. The
tween bound sites and the heterogeneous ideal model. Thaair coefficients lead directly to the stoichiometric con-
mathematical details are described in the Appendix. stants a¥;=(b;/b;_,).
At very low concentrations of the complexing agent, all
complexation systems behave like the ideal ¥ffThe con-

Il. THERMODYNAMICAL TREATMENT OF THE centration of the formal species do not differ among different

COMPLEXATION OF A SMALL MOLECULE TO A complexation models, and the average equilibrium function
MACROMOLECULE tends to a constant given by
lim K.(cy)=K. (6)

In order to avoid ambiguities, let us assume that: cy—0

(i) ~ Acomplexing siteSis a set of coordinating groups of Because of this limiting behavior, a formalism in whigh
a macromoleculeP, to which a small moleculéM)  pjays the role of a thermodynamical constant for the process
(known in the biochemical literature as ligandan 4+ SeMS has been developed, the activity coefficients for
bind; formal species relating the concentration of formal species to
(i)~ M;P labels the chemical species with the same numthe concentration that would have been present if the com-
berj of bound ligands, regardless of the specific sitesp|exation had been ideal. Moreover, at very high concentra-

complexed; tions of the complexing agent, the average equilibrium func-
(iii)  All full covered macromolecules have the same nuM-jon tends to

ber, s, of bound ligands; .

(iv) M, MS andS label the so called formal species de- lim Kc(cy)=sKs, ()
fined by their concentrations, (concentration of free M
ligand), CMSEEjS:OjCMjp (concentration of bound which allows us to compute the last stoichiometric stability

ligand) and cs=37_s(s—j)cw p (concentration of constant<s, if sis known.
free sites of the macromoIeCl)lee It has also been reportéthat the macrocanonical parti-

(v)  Ideal dilute solution behavior for the real speciésP tion function, = (cy), is in fact a polynomial of the product
(j=0,...s) is assumed. Kcy - ThereforeK is a normalization constant for the coef-

ficients of the macrocanonical partition function, and a new
Let us represent the sequential complexation of the macset of coefficient{a;} can be defined as

romolecule as banjKj (8)
Kj so that{a;} are independent df. Thus, Eq.(5) can always
M;_P+MeMP o j=1,.5, (1)  be rewritten in terms ofa;} if a suitable change of the
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ferentK can be compared and reduced to the désel with d(cy)dIncy . (16)
a suitable election of the concentration units. In the follow-
ing we assume thd =1 without loss of generality.

For ideal complexation, the expressions oy and b;

concentration scale is chosen. Therefore, systems with dif- cm 6(Cy) Inc
F(CM Ej c dCM:f
M

— o0

Equations(15) and (16) relate the macrocanonical partition

reduce t&° function E at a concentratiog, to the area covered by the
. curve 6(cy)/cy VSCy -

bid— _S)Kj. aid:(_s). Kid:S_J+1K ) The Wyman integral equatiéni can be easily derived

Y VA Y P j ’ from Egs. (15 and (16). The integration, by parts, of Eq.

where the superscridid) refers to the ideal complexation (16) leads to
case. Any complexation model can be tackled by defining an

excess equilibrium constat| as In(i) - Jy edy a7
v | T M
s—j+1 . Cm
K=K -———K' (10)

j
which in the limit of cy,— yields bg,
and, IabelingAjGO the standard Gibbs energy for the com-

plexation equilibrium of thg-ligand,

S
A]GO:_RTln K] (11) In bs:_fo In CMdV. (18)
an excess Gibbs energy can defined as
RE_ A O (A ~OVd_ _ E Equation(18), known as the Wyman integral equation indi-
AjGT=4,GT=(4;G) = ~RTInK; (12) cates thabg can be obtained from the area of the curveyn
indicating the deviation from the ideal complexation case. vs v.
The Gibbs energy involved in the binding joligands to We are now trying to extend the Wyman integral Eq.
the naked macromolecule is given by (18) for bg to anyb;. SinceZ(cy) is a polynomial incy, ,
i the coefficients{b;} can be expressed using the Laurent
G'=>, A,G’=—RTInb. (13  developmerff as
=1
Finally, we will refer to the binding capacityB(cy), a 1 exp(sF(z))
function ofcy, introduced by di Cerz and defined as bj=5_— jg BT (19
B(cw) = (14

wherezis a complex variable and the integration takes place
over a path containing=0. Let us definep;(z) as

dincy

Di Cera has provetthat the functionB is always positive,
and an increase or decreaseopf leads to an increase or
decrease ofB, respectively. In fact, the binding capacity exp(sF(z))
plays the role of a physical response function such as heat i Z)ET
capacity or compressibility, and its positive character is re-

lated to the stability principles embodied by the second law . .
of thermodynamicé: The Appendix shows that if takes values on a complex

plane, the functionp;(z) has a local minimum in the real
direction and a local maximum in the imaginary direction at

(20

IIl. APPLICATION OF THE SADDLE POINT z=cj (wherec;. , indicates the value afy corresponding
APPROXIMATION TO THE DETERMINATION OF to v=j+1) wheneverj<s—1; i.e, z=cj,; is a saddle
EQUILIBRIUM CONSTANTS point. This is an interesting mathematical property because

the integration(19) can be easily performed on a circle with

We are interested in obtaining simple approximate eXtenterz=0 and radius =c; , 1; sincez=c;,, is the highest

pressions fob; which can be useful to avoid unstabilities in ,5ximum on such a circlsee Appendix the major contri-

the fitting of the Adair equatiort5).* For highs values, a  ption to the value ob, , is located close ta=c; .+, in the

usual way to deal with problems in statistical mechanics is tc?maginary direction.

apply the classical approximation of Darwin and Fowfer, Performing the integral19) as described in the Appen-

which allows a drastical simplification of the expressionsg;y Eq. (A14) leads to the following value fob; :

involved. J
Let us integrate expressidp) for the mean number of

; j+1 1 1 dv
occupation. Thus, In bj:—j Inchv——In( 2T —— | T )
s 0 2 c? dincy|.
. j+1 CM=Cj+1
E(cu) =2, bjcly=exp(sF(cw)). (15) (21)
where which, using the definition ob; in terms ofK;, becomes
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j+1
In Ki:_f. Incydv
i

“Ci+1

(22

Expression22) provides a method to obtain an estima-
tion of the firsts—2 stoichiometric stability constants from
experimental data of lg, vs v. The first term in the rhs of
Eqg. (22 corresponds to the area under the curvgjivs the
mean occupation numbey, betweenv=j and v=j+1.
Therefore, for a large number of binding sites, the calcula-
tion of the stoichiometric constants only needs a small interFIG. 1. Schematic plot of the inverse of the binding curvegrvs v. The
val of points aroundv=j. The constant&,_; andK, can- value of Incy, at the integer values of=] yields directly, in the limit
not be calculated by this method because the funafig) >~ —Ink;.
does not have a saddle point fprs—1 andj=s as de-
scribed in the Appendix. Obviously, bo#, andbg can be
calculated as indicated in Eqé7) and (18), respectively.  Since the interval of integration in Eq24) decreases as
WhenK; and bs are known, it is possible to evaluate the increases, we can assurpe-0 for large values o; there-

values ofbg_ 4, and alsoK_ 4, the remaining constant. fore, Eq.(23) becomes
, AG°
IV. THERMODYNAMICAL LIMITING CONDITIONS im InK;=——p7==Inlcu],-j=~Inc;. (25

S—

(s—=)

For many systems, the number of sites per macromolHence, under thermodynamical limiting conditions, the value
ecule is high enough to obtain a good description taking thé@f the standard Gibbs energy associated Wiffis the oppo-
limit s—oe, an assumption which is known as the thermody-site of the logarithm ot;. Expression(25) can also be re-

namical limit. We will particularize the result®1) and(22)  Wwritten as
to these conditions in order to deduce simple expressions for

the set of stoichiometric constants of complexation and to _ 1
provide a physical interpretation of the binding curve. S“m Kj= cu .:c_,- (26)
—s 00 v=j
A. An expression for the set of stability constants providing a very simple method for obtaining the set of stoi-
{Kj} in the limit s— o chiometric constants and their corresponding Gibbs energies
In the limit s—, the second term of the rhs of E@2) N & system with a large number of sites. _
disappears. This is easily seen if E82) is written in terms Some remarks of the resul26) should be emphasized:

of 6 and it is divided bys. For large values 0§, it becomes ;)  Thjs result provides a simple physical interpretation to

0 _ the inverse of the binding curve (ty vs v); the
) 1 . 1 A]G ‘9]+1 . . -
lim—InK;=—lim— :_f Incyde, (23 value of Incy at »=j gives directly the standard
N soeS RT 0 Gibbs energy involved in the complexation of tjta

Iigand,AjG0 (see Fig. 1 Likewise, a plot of 1¢,, vs

v leads directly, for integer values of, to the stoi-

chiometric stability constants.

If thermodynamical limiting conditions are fulfilled,

K; must decrease withfor any complexation model,

reaching the values provided by E@®6). Now, we

remark the generality of this result. Actually, K;

o 1 [+t increases withj for s—, (K;,/K;)=1, Eq. (26)
j+1 . . .

f Incydé= —f Incydv yieldsc;,;=c;. This means that the free ligand con-

0j SJj centration corresponding te=j + 1 is lower than the

value ofcy, corresponding ta=j and leads immedi-

and the standard Gibbs energ%GO, can be calculated by

computing the area under the curvecipvs v or 6 between

the points (Irg;, v=j or ¢;) and (Inc;, 1, v=j+1 or 6;,1). (i)
Furthermore, for very large values sfexpression(23)

can be simplified applying the mean value theorem to the

integral

1
= g{(l—cp)m Citelincjiq}; OsesLl ately to a negative value of the slopevs Incy, (B
<0). Therefore, Eq(26) is directly related to the ther-
(249 modynamical stability conditionB>0) for s—oo.
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(i)  According to Eq.(25), we can write o /
dincy 1 G? /RT ﬂ,”'
InKj;1—InKj=In¢;=Incj 1~— & | ~lBl 20
V=] V=] o
(27 15 - ,
and y
A GO_A‘GO 1 10
o B e (28) 7
RT - N .
Thus, fors—o, the inverse of theB value can be ’,s'
interpreted as a measure of the difference between th  °] Py
affinity of the ligandj+ 1 and the ligandg, i.e., as the PN
standard Gibbs energy needed to complex a nev . P oot ’ ‘ . ‘
ligand, relative to the standard Gibbs energy neede(a) o s 0 1 i 2
by the last complexed one.
A;G°/RT
€ &
B. Relationship between the average equilibrium o A
function, K., and the stoichiometric constants K; in . ‘:/'
the limit s— o 7 o
According to Eq.(10), N s 7
i K iIs K
E_ N N e
K s—j+1 K 1-j/s+ls K’ (29 o- A
For s large enough the term d.€an be neglected ol :
i K, ¥
E__~
SIET:O KJ a S_j K (30) 4 T T T 1
(b) 0 5 10 15 j 20
and using Eq(26) for the value ofK; and Eq.(4) for the
average equilibrium function, .
111 » K **7 8,65 /R
E_ | — _|De Ve
sllej_K = [K i (31 50 Y
— CM=Cj CM=C;
In terms ofA;GF, Eq. (31) is rewritten as 257
Ke 20 - <
lim A;GE=—RT|In e (32
S0 M= 15 . &
Thus, for a high enougls value, that ofK./K when the N ) e
mean number of occupation is an integer is merely the valu Ny
of the excess stability constaNf, and its logarithm is pro- 05 - .~
portional to the excess Gibbs energy. \
0.0 ~4 o .
© g ; 1LJ 1; j 20

V. APPLICATION TO SOME PARTICULAR

COMPLEXATION MODELS FIG. 2. Exact valuesin dotted lines with marke] (empty squarg of the
Gibbs energieﬁ;? (@), increments of Gibbs energieAj(Go) (b), and excess
In this section, we apply the results above described t@ibbs energiesA;GF) (c), for the interaction model of complexation with
some simple models of complexation; an homogeneous con‘fltggadig; Pifi‘ﬂrﬁfteﬁazz (rc‘{egitri]"ﬁ] COOPE@VWE" E“mb,er 2:1 5‘;‘?:;‘ t
: L : . =20 andK = , compared with those obtaine using the differen
plexation with interaction petwee_n SIte?’ and _an I‘]eterOgea_\pproximaltions proposedpin this work; marl@r(filled ci)rlcle) fc?r approxi-
neous case of complexation without interaction betweemation given by Eqs(21) () and (22) (b); markerA (empty trianglé for

sites. Both cases are widely used in the literature. approximations given by Eq$25) (b) and(32) (c).

A. Complexation with interaction between neighboring
sites

A simple model to describe systems with interaction be-
tween bound species considers a fixed interaction enérgy
between the nearest neighboring occupied s{id3 Ising
mode). The excess stability consta(t2), within the 1D-  where=(1/kgT), thus showing thaK; depends exponen-
mean-field approximation, is given b$#~% tially on j.

2(j —1)) 33

E_
i —eXF’(—ﬁﬁﬁ
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As described in Sec. Il, results obtained for systems with _ | G} IRT J
any value ofK can be compared with those present here if a /
suitable change of the concentration scale is performed As /
is merely a concentration scale factor we have usedl in * /
the present calculations. It

As usual, two contributiongan “enthalpic” or “ener- 7 /
getic” effect and an “entropic” effecgtcan be considered in /

G (=H{-TS)) and A;G°(=A;H°~TA;S). Taking K 27 /

=1, the enthalpic contribution only includes the effect of the

lateral interactiongpositive for repulsive interactions and  °7 /

negative for attractive ongsConcerning the entropic contri- s

bution, whilej<s/2,S) increases ajincreases and the® 2 . /

decreases foj>s/2 because the number of accessible mi- "\\ _______________ ) //"”

crostates for the binding ¢fligands to the naked macromol- (a) , . . . s i
ecule decreases. Accordinglé)(,js0 is a monotonically de-

creasing function taking positive values fgrs/2 and 6 4,G% /RT

negative ones foj>s/2 regardless the sign &t

Figures 2a), 2(b), and Zc) show the exacG?, AJ-GO,
andAJ-GE (j=1,...s—2) values obtained with Eq33) for a 7 .
case with repulsive interactiongg$=2) ands=20 (as an /a

o o

estimation of the thermodynamic limit condition®gether
with the results obtained from the approximate expressions o~
(21), (22) proposed in this work and their corresponding lim- -
its whens—oo, Egs.(25) and(32). The exactG? values are o /
in good agreement to those obtained with the approximate .
expression(21), as Fig. 2a) shows. A good estimation is e

also obtained forﬁjGO (related to the stoichiometric equilib- ] e
rium constantK;) using the approximate expressiof2)
and (25) in Fig. 2(b) and a comparison between the exact ®) o ' T i ' X '
AJ-GE values and those obtained from the average equilib-
rium function, K., by using the approximate expression FIG. 3. As in Fig. 2a) and Fig. Zb) but with the number of sites=10.
(32), is shown in Fig. &). Decreasings (see Fig. 3, where

the same calculations as Fig. 2 have been performed for a

smaller number of sites=10), the thermodynamical limit The conditonB>0 [the binding capacity defined in Eqg.
approximate expressions begin to deviate, especiallyZy.  (14)], applied to Eq(34), leads to

for A;G° [Fig. 3(b)], but the corrective term given by Eq. B5>—2 (35)
(22) for GJQ [Fig. 3(@] and by Eq.(22) for AJ-GO [Fig. 3(b)], S ) )
yield still accurate results. which indicates that the system is thermodynamically stable

As Figs. 2 and 3 correspond to a repulsive case, for lowfo" S— only whengs>—2. This is a consequence of the
values ofj, G? decreases with increasifjgoecause the en- US€ of the mean-field approximatigwhich implies a phase

L _ - 19,21 i
tropic contribution predominates over the enthalpic onelransition agé=—2 for the 1D-Ising modgl™ " Since ap-

whereas for intermediate and large valueg, dhe repulsive ~Proximations(21)—(22), (25), and(32) have been deduced
interaction becomes more important a@{ increases even YS9 the thermodynamic limit as the starting point, their
to positive values. Accordingly);G® and A;GE always in- values will diverge from the real ones as we appro@ch

crease withj and, thereforek; andK , always decrease with = —2, since the mc_>de| used Iead_s to a non reglist_ic_descrip-
j, as expected. tion of the system if86< —2 ass increases. This difficulty

When positive cooperativity is considerésee Fig. 4, Can be avoided taking into account the correlations between
where 86=—1) only the entropic contribution f0f>S/2’ the interactions of different ligands in the macromolecule,
contributes to increase!. So,G? decreases with increasing which we neglected with the mean-field approximation.

j until aj value larger than that found in the repulsive case.
For this attractive case, the agreement between the real amd Heterogeneous complexation: Relationship
approximate values (ﬁ? is not so goodFig. 4@)] asitisin  between the stoichiometric and the intrinsic stability
the repulsive caséFig. 2), especially for the lowest and the constants
highest values of. This can be explained from the relation- Due to its direct microscopic interpretation, the hetero-
ship between the coveragéand the ligand concentration genequs model is widely used especially when there is some
Cw, which under thermodynamical limiting conditions is  heyious physical information suggesting the consideration
of sites with different affinities.
i =(1— 0)exp(—2356). (34) Let us consider a system with kinds of sites, and leg;
Kem be the number of sites of typewith an intrinsic stability
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FIG. 4. As in Fig. 3 but withB5=—1 (positive cooperativityands= 20.
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wherew; ;, the weighting factors, corresponds to the mean
number of free sites of theth type atv=j and 6;;
E(kiCM)/(1+kiCM)cM:ci and »; ;=s;6, ; are the coverage
and the mean occupation number of the sites of tygiethe
free ligand concentratioq; .

Thus, K; are calculated as an average of the intrinsic
stability constantk; with a weighting factor given by the
mean number of free sites of typat the concentrations;
respectively. This indicates that the stoichiometric stability
constant of the binding of an additional ligand to a macro-
moleculeP is an average of the intrinsic stability constants
not yet occupied.

The relationship betweeK . and the intrinsic stability
constants is easily obtained. From E@4) and (36) it is
obtained®

=Zl xi(cm)ki ,
(39)

1( v 1 k;
KC(CM):Q(S ): zsi1+kic,\,|

-V

wherex;=(s;— »;)/(s— v) provided that={" ;x;=1, and,
is the mean occupation number of the S|te$tbftype at the
concentratiorcy, .

This expression holds independently of thealue and
indicates that the average equilibrium constant is an average
of the intrinsic stability constants with a weighting factor
given by the fraction of mean number of free sites of type
with respect to the total of free sites at the concentratign

Figures %a) and 8b) consider a heterogeneous system
with two types of sites with the same probability; € s,),
but with a different total number of sites 16 and 30, re-
spectively. The approximate expressiq2®) and (25) are
used to reproduce the value of the free energies involved. In

constantk; (i=1,...m). Assuming a Langmuirian local iso- 9general, a good accordance between the exact results and

therm, the mean occupation number can be related to tH&0Se given by(22) and(25) is obtained, especially for the

ligand concentration, without assuming thermodynamicahighest number of sitess¢30). As expression$22) and
limiting conditions, by (25) work out the results for the stoichiometric constants

from the plot 1¢y, vs v [Fig. 1(b)], care must be taken to

minimize the experimental error in such plots, because they

have direct influence on the stoichiometric constants.
Regarding the results described above:

KiCu n
+kicy .Zl Si=s (36)

v(Cy)= 2 S T oL~ 1

The relationship between the stoichiometric constants
and the intrinsic stability constants described by Kidts (i)
cumbersome for larges values. Nevertheless, expression
(25), valid for the stoichiometric stability constants in the
limit s—oo, together with Eq(36), provide a very simple
expression for such relationship, valid for larggalues,

m
s ki
“mK_ _2 ]_1+kcJ (37
Equation(37) indicates that the stoichiometric stability
constants; can be considered as an average of the intrinsic

stability constants,

1 .
lim KJ:_Z Wi,jki; (")
S—0 =
Ji=1
(38
Si
Wi’jzl+k,cj_s'(1_0i'j) S Vi

Equation(37) relatesK; to the intrinsic stability con-
stantsk; . Replacinge; in Eqg. (37) in terms ofK;, we
have

E 5 K+K (40)

Expression40) relates the Adair approach, a macro-
scopic description of the binding, to a microscopic or
local formalism widely used in complexation prob-
lems; the affinity spectrum methddisually, in this
last formalism, the summation involved in E40) is
replaced by an integral when a continuous distribution
of intrinsic stability constants is assunjed

In some cases, it is reasonable to replace the local
Langmuirian isotherm in Eq.36) by other local iso-
therms (for instance, the Fowler—Guggenheim or
Frunkim isotherm of the kind f(k;,cy). Then Eg.
(36) could be generalized as
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°7 A,G*/RT so-called saddle point approximation. The goodness of such
approximation to analise complexation problems is studied
2 T in this work.
Very simple expressions for the value of the figst2
4 v Gibbs energies of the sequential complexation processes
have been deduced. These Gibbs energies are calculated di-
5 s/ rectly from the binding curve without making any hypothesis
on the model of complexation involved, and contain two
. L e contributions; the first one is an integral term corresponding
S to the area under the curvedy vs the mean occupation
L number betweepandj+ 1. The second contribution, which
AT can be considered as a corrective term, depends on the bind-
ing curve derivatives on the points with an integer value for
: i : . . A o . the mean occupation number. This last term can be neglected
for high s values.
0 The value of the stoichiometric stability constarnts
A;G"/RT B tends to the inverse of the free ligand concentration at the
el point of mean occupation number equa] s the number of
e sitess increases. This provides a simple interpretation of the
o average equilibrium functiorK ., which takes the value of
A the excess stability constari,", at integer values of the
mean occupation numbep€j).
The expressions derived are applied to a simple hetero-
e geneous complexation case and to an homogeneous com-
plexation with interaction between bound sites. The results
obtained reproduce quite well the real values of the stability

-
@

107 S constants, and the accuracy increases iasreases.
o For the heterogeneous case, in the ligit<, we have
2 8 : : : , : , derived very simple expressions to relate the stoichiometric

i ® stability constantga macroscopic description of the com-

plexation with the intrinsic or microscopic stability con-

FIG. 5. Exact increments of Gibbs energiesjf(so) for a heterogeneous  gtants represented in the affinity spectrum.
system with two kinds of independent sitds; € 10 M™%, k,=10* M),

compared with those obtained by using the different approximations pro-
posed in this work with markers as in Figb? (a) s;=5s,=8; (b) s5;=5, APPENDIX: APPLICATION OF THE SADDLE POINT

-1 APPROXIMATION TO THE MACROMOLECULAR
BINDING
Coefficientsb; of the macrocanonical partition function

il are obtained as the result of the integiEd)
v=2, 5f(k Cw). (41)

- _— . . 1 [ exp(sF(2))
In such a case, a relationship between microscopic bj:ﬁ 1 4z (A1)
and macroscopic parameters like E40) can also be c z
written as : .

m wherez takes values in the complex plane afids a closed

N S i path on this plane arourm=0.

1=2, ~flk, (42) . ’ o

=1 K| We have defined an auxiliar functiop;(z) in Eq. (20)
which generalizes the relationship between the Adai@s
approach with t_he affir_1ity spectrum method given by expsF(2) E(z) Z5,bZ
Eq. (40) for a wide variety of local isotherms used. ol (2)= A = =

| Z]+1 ZJ+1 Z]+1
S
- i-j-1
VI. CONCLUDING REMARKS —ZO biz ™17 (A2)

The Darwin—Fowler method, a classical result of statis-Equation (A2) indicates that the functiom;(z), the inte-
tical thermodynamics, has been reviewed in order to obtaigrand of Eq.(Al), is an analytical function except far
approximate expressions for the stoichiometric constants of Q. Therefore ¢;(2), is an harmonic functici’
the complexation of small ligands to macromolecules with a
number of sites so high that thermodynamical limiting con-
ditions are used. The Darwin—Fowler method is based on the

2 (92

Downloaded 04 Mar 2013 to 193.144.12.130. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



2826 J. Chem. Phys., Vol. 111, No. 6, 8 August 1999 Garcés, Mas, and Puy

wherex andy indicate, respectively, the real and imaginary radiusc;, the contour will pass througy in the imagi-

components of the complex varialie nary direction, in which point and direction the integrand has
Restrictingz to real values, wheregs<s—1,$;(z) has an extremely sharp maximum.
a minimum along thisx-axis at some point=z; because This is the highest maximum on the circle. The absolute

exp&H2)) is a monotonically increasing functiga polyno-  value of ¢;(z) over the circle withz|=c;., is
mial of degrees with all the coefficients; being positive

S
j+1 ; ; ; .
and 1)2_ is a monotonlcallyflecreasmg function along the |¢;(Z)|= — 2 bz, (A9)
real axis. Hence EqA3) for z=z; leads to |z]) 1| =0
) do; (92¢j which reaches its maximum value when all the terms are
$(Z)=\4z] =9 |52/ =0 real. As all theb; coefficients are real and positive, all the
=7 z=7] terms are also real and positive if and onlyi z;. Hence,
P2 (A4)  ¢(2) reaches the highest maximum along the cirfp
(_21) <0; (j=0,...s—1), =Cj;1 over the real axis.
N,y As there is no maximum comparable in height along the

contour, the main contribution to the integrgdl) comes

where the first equality is derived from the condition of €x-from the neighborhood of; . ;. Expandingg;(z) aroundz
treme atz=z;, the second indicates the presence of a mini-:C,+ ! !

mum in the real direction and the last condition comes from
Eq. (A3). 9(2)=9(Cj+ 1) +39"(Cj+1)(2—Cj 1)+ (A10)

_ ®i(2) is an a_malytica! function and satisfies the C_:fiUChy—repIacing Eq(A10) in Eq. (A1), and using the polar form of
Riemann equatior, which ensures that the condition of ; anddz providing that the circle of integration has the ra-
extreme for ¢i(z) yields 0 @4;/9X),—;  dius |z|=c;. 1 (z=C;, 16", dz=ic;  €/*dg), the integral
=—i(d¢; /ay)Z:ijo, which together with the last inequal- (A1) becomes
ity of Eq. (A4) indicates the simultaneous presence of a
maximum for ¢;(z) along the imaginary direction at _ m
=2z;. Thereforez; is a saddle point on the complex plane. bj= Zf_ﬂRe{eXp(S{gj(CHl)

Forj=s—1 orj=s there is no minimum fo;(z) along the _ _
real axis, since functio;(z) decreases monotonically. +307(Cj41)(Cj+1€'9— i 1)?})c 1€ d o, (A11)

It is easy to compute the real valag corresponding to
the minimum of ¢;(z). The condition of extreme¢j’(z
=2;)=0, using Eq(A2) becomes

where it has been taken as the real part sinces real.
From the definition of(z) and Eq.(A2), g"(cj1) can
be evaluated as

dInE(z) )
( Jinz ) =i+l (AS) 11 dv
2= 9"(Cj+1)= < 2—(—) (A12)
Scfyy dincy/, _.
which, taking into account that the It{s=left hand sidg of Mo
Eq. (A5) corresponds to the mean occupation numbés), If the integral (A11) is performed only in a small interval
indicates that az=z;, »=|+ 1. Thus,z; corresponds to the aroundc; . ,e'¥ can be replaced by#i¢, and taking into
concentratiorcy for which v=j+1, labeled a<;., account that the only relevant contribution to the integral is
located in this small interval, the limits of integration can be
Zj=Cj1; v(Cj11)=s6(cj )=j+1. (AB)  extended tq—oo, «).

Then, substituting Eq(A12) into the integralAll), the

To calculate the second derivative ¢f(z) atz=z; we . . _ .
/(2) ! evaluation of the resulting quadratic integral yields

use the auxiliar function

1 n¢j+a .
9j(2)=5In (2), (A7) Inb;=— wa v(cy)dincy—(j+1)Incj,y
leading to 1 1 dv
- Eln 2772— W (A13)
¢ (z=cjy1) =80 (Cj+1) Pj(Cj11) €1 M ew=cj11
=sg'(cj.1)exp{sg(cii 1)}, (A8)  and integrating the first term of the rhs of E4.13) by parts,

this equation can be written as
where it has been used the condition of extredjéc;, )

=g{(cj+1)=0. j+1
Equation(A8) gives the concavity of;(z) atz=z;. It Inbj=— . Incy dv
indicates that the concavity increases witHeading to a
sharper maximum on the imaginary direction and a deeper 1 1 dv
minimum on the real direction appear. If we choose the con- sy 27 ——| 77— . (A14)
. . : . 2 ¢z \dlncy/ _
tour of integration of Eq(A1) to be a circle about=0 with j+1 CM=Cj+1
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GLOSSARY OF SYMBOLS
Latin letters

Cms
Cts

f(k,c)
F(c)

gj(2)

AGE

dimensionless Adair coefficient

Adair coefficient

binding capacity

molar concentration of speciéd;P (j=1,...5)
molar concentration of free ligands wher
molar concentration of free sites

molar concentration of free ligands

molar concentration of bound sites

total molar concentration of sitesfree and
bound

generalized local isotherm for complexation
auxiliar function related to the logarithm of the
macrocanonical partition function

auxiliar complex function related t;(2)
standard Gibbs energy necessary to complex
ligands

standard Gibbs energy for the process of com-

plexation of thejth ligand

Complexation to macromolecules 2827

?i(2) auxiliar complex function related to the complex
macrocanonical partition function

10 phase of a complex variableimensionless real
variable

v mean occupation nhumber

Vi mean occupation number of sites of ttik type

Vi mean occupation number of sites of thk type
whenv=]j

0 coverage or fraction of occupied sites in a mac-
romolecule

0; j coverage of sites of thigh type whenv=|j

E macrocanonical partition function of the system
{M;P;j=0,...s}

Superindices

id ideal

0 standard state
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intrinsic stability constant of a complexing site of
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average equilibrium constant
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number of different kind of sites in heteroge-
neous macromolecule

free ligand

macromolecule species wiflbound ligands
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gas constant

total number of sites in one macromolecule
number of sites ofth type in the heterogeneous
macromolecule

absolute temperature

mean number of the free sites of thé type

real part of the complex variable

fraction of free sites of théth type with respect
to the total number of free sites

imaginary part of the complex variabie
complex variablez=x+yi
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