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Affinity distribution functions in multicomponent heterogeneous
adsorption. Analytical inversion of isotherms to obtain affinity spectra
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Barcelona University, C/Martı´ i Franqués, 1, E-08028 Barcelona, Catalonia, Spain

Jaume Puy
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~Received 5 December 2003; accepted 24 February 2004!

An analytical approach for the interpretation of multicomponent heterogeneous adsorption or
complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier
transform, applied to analyze the corresponding integral equation, leads to an inversion formula
which allows the computation of the multicomponent affinity spectrum underlying a given
competitive isotherm. Although a different mathematical methodology is used, this procedure can be
seen as the extension to multicomponent systems of the classical Sips’s work devoted to
monocomponent systems. Furthermore, a methodology which yields analytical expressions for the
main statistical properties~mean free energies of binding and covariance matrix! of
multidimensional affinity spectra is reported. Thus, the level of binding correlation between the
different components can be quantified. It has to be highlighted that the reported methodology does
not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance
of the binding energies of the different components. Nonideal competitive consistent adsorption
isotherm, widely used in metal/proton competitive complexation to environmental macromolecules,
and Frumkin competitive isotherms are selected to illustrate the application of the reported results.
Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are
obtained for the NICCA case. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1710857#

I. INTRODUCTION

The interpretation of the interactions of small molecules
with heterogeneous surfaces and/or macromolecules, both in
gas and solution phase, has been the subject of intensive
research for the last decades owing to its great importance in
several scientific disciplines: environmental speciation
studies,1–3 gas/solid adsorption,4,5 binding of ligands to bio-
chemical receptors,6 chromatographic studies,7 polymer
science,8,9 etc. A current strategy to describe monocompo-
nent adsorption consists in expressing the total macro-
molecular/surface coverageu as a weighted superposition of
local Langmuirian isotherms1,2,10

u~c!5E
2`

`

p8~k!
kc

11kc
dk5E

2`

`

p~ ln k!
kc

11kc
d ln k,

~1!

where c is the concentration of the adsorbed species and
p8(k) is the so-called affinity distribution function or affinity
spectrum, which expresses the probability density of having
sites in the macromolecule/surface with binding stability
constant for the adsorbed species lying in betweenk and k
1dk. Usually, as indicated in Eq.~1!, the affinity spectrum
is represented in the logarithmic space lnk, proportional to

the binding free energy. Hence, once a concrete form for the
affinity spectrum is proposed, Eq.~1! produces an analytical
isotherm which can further be used to fit an experimental set
of coverage versus concentration data.

In other cases, one could be interested in the knowledge
of the affinity spectrum underlying an empirically proposed
isotherm, which successfully describes the experimental in-
formation available. This inverse problem reduces to solving
the integral equation~1! for p(ln k). An inversion formula to
obtain p(ln k) for a given analytical isotherm was provided
by Sips in a pioneer work.10 The formula has been widely
used for a long time in the interpretation of monocomponent
isotherms ~such as Langmuir–Freundlich, Frumkin or
Temkin! in terms of a underlying affinity distribution
function.10,11 On the other hand, several numerical methods
have been applied to determinep(ln k) directly from a given
set of experimentalu versus ln(c) data. Among these, the use
of regularization methods to solve the integral equation~1!
became the subject of many works devoted to the analysis of
heterogeneous monocomponent adsorption, both in gas and
in solution phase.3,4,12

The affinity spectrum approach can be straightforwardly
extended to multicomponent competitive adsorption, by con-
sidering the macromolecular/surface coverage of each com-
ponenti, u i(c1 ,c2 ,...,cN), dependent on the concentrations
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of all the N components of the system, as a superposition of
competitive Langmuirian isotherms13–16

u i~c1 ,c2 ,...,cN!5E
2`

` E
2`

`

...E
2`

`

p~ ln k1 ,ln k2 ,..., lnkN!

3
kici

11(
j 51

N

kjcj

)
j

d ln kj . ~2!

Nevertheless, the main obstacle for this generalization
lies in the multidimensional nature of the integral equation
~2!. This has resulted, in contrast with the equivalent treat-
ment of monocomponents systems, in a lack of simple ana-
lytical results allowing an easy interpretation of empirical
isotherms in terms of an underlying affinity distribution
function. Regularization methods have been successfully ap-
plied to the finding ofp(ln k1,ln k2,...,lnkN) for two adsorb-
ing components in solution.17 However, the inverse problem
has not been analytically solved for the general case. A first
aim of this work is to provide, in Sec. II, a general analytical
solution for Eq.~2!, based on Fourier analysis, and to apply
it, in Sec. III, to the finding of the affinity spectrum which
generates nonideal competitive consistent adsorption
~NICCA! and competitive Frumkin isotherms. It is important
here to note that the choice of the local competitive isotherm
appearing in the kernel of Eq.~2!, in the case of competitive
adsorption, could be multiple. In this work we only under-
take the problem of Langmuirian local adsorption, but if, for
instance, the molecules of one component bind to more that
one site at the same time~chelate complexation!, other
choices of the local adsorption isotherm would be required.17

Another question of interest in the characterization of the
binding to heterogeneous systems is determining the mini-
mum information needed to successfully describe a set of
experimental adsorption data. This question arises from the
very ill-posed nature of the integral equation~1!, i.e., small
changes in the affinity spectrum lead to almost the same
binding curve. This means that, from a practical point of
view, only a part of the information contained in the affinity
spectrum is of interest in the interpretation and prediction of
the empirical information for a given range of concentra-
tions.

In the case of monocomponent systems, it has been
shown that in a wide range of concentrations corresponding
to intermediate coverages, only the meanm and the variance
s2 of each peak of the affinity spectrum are relevant in the
description of the experimental binding curve~that is, differ-
ent isotherms with the samem and s2 can reproduce with
similar accuracy the same binding curve!.18 Hence, the
knowledge ofm ands2 is almost enough to characterize the
binding properties of the heterogeneous surface.

It is therefore expected that something similar will hold
for multicomponent systems, becoming relevant quantities in
this case not only the mean and variance of the spectrum of
the different components, but also the correlation of the bind-
ing among them. The natural mathematical description of
such statistical properties is the set of mean affinities~one for
each component! and the elements of the covariance matri-

ces. A procedure to obtain means and covariance matrices of
multidimensional affinity spectra in terms of the parameters
of competitive isotherms is given in Sec. IV, and thereafter
applied to NICCA and Frumkin isotherms.

II. FOURIER ANALYSIS OF MULTICOMPONENT
BINDING ISOTHERMS: AN INVERSION FORMULA
TO OBTAIN THE MULTIDIMENSIONAL AFFINITY
SPECTRA

A. Transformation of the integral Eq. „2… in order
to apply Fourier analysis

Let us assume that the coverage of certain componenti,
u i($cj%), can be expressed as a superposition of multicom-
ponent Langmuirian isotherms, as Eq.~2! indicates. In order
to apply Fourier transform techniques, it is convenient to
rewrite Eq.~2! in terms of a new set of variables,

xi52 ln ki , ~3!

m i5 ln ci , ~4!

wherexi is proportional to the binding free energy of com-
ponent i to the site andm i is proportional to the chemical
potential of componenti. In terms of these new variables,
Eq. ~2! rewrites

u i~mW !5E
2`

` E
2`

`

...E
2`

`

p~2xW !gi~mW 2xW !)
i

dxi , ~5!

where vectorial notation, mW 5(m1 ,m2 ,...,mN) and xW
5(x1 ,x2 ,...,xN), have been used, and

gi~mW 2xW !5
em i2xi

11(
j 51

N

em j 2xj

. ~6!

Thus, Eq.~5! takes the form of a convolution equation.
Fourier analysis provides an immediate solution for the

Fourier transform~FT! of the affinity spectrum. Since several
definitions of FT are commonly found in the literature, we
adhere to the FT definition of an arbitrary functionf, as in
Ref. 19,

f̃ ~vW !5E
2`

` E
2`

`

...E
2`

`

ei ~vW • x̄! f ~xW !)
i

dxi , ~7!

where the components of vectorvW 5(v1 ,v2 ,...,vN) are the
variables in the Fourier space.

Bearing in mind that the FT of the convolution of two
functions, is the product of their Fourier transforms and re-
calling that the FT ofp(2xW ) is the complex conjugate of the
FT of p(xW ), the Fourier transform of~5! leads to

ũ i~vW !5 p̃* ~vW !g̃i~vW !. ~8!

Nevertheless, as functionsgi andu i do not tend to zero in the
limit m i→`, we modify Eq.~5! in such a way that Fourier
analysis can be applied with well behaved functions.

From the total macromolecular coverage

u5(
i 51

N

u i ~9!

a new functionB can be defined as
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B~mW !5~21!N11
]Nu

]m1]m2¯]mN
. ~10!

This function,B(mW ), has the properties of a density of prob-
ability if the macromolecular coverage is expressed, as in the
present work, as a superposition of competitive langmuirian
isotherms. As it is shown in Appendix A,B(mW ) is positive
for all values ofm i ,

B~mW !.0 ;m i ~11!

and its integral over allm i is

E
2`

` E
2`

`

...E
2`

`

B~mW !)
i

dm i51. ~12!

As we will see, properties~11! and ~12! will play an impor-
tant role in Sec. III, in order to quantify the correlation in
multicomponent affinity spectra.

Let us useB(mW ) in solving ~5!. Differentiating both
sides of~5! with respect to eachm1 ,m2 ,...,mN , the integral
equation becomes

B~mW !5E
2`

` E
2`

`

...E
2`

`

p~2xW !h~mW 2xW !)
i

dxi , ~13!

where

h~mW 2xW !5G~N11!

)
i 51

N

em i2xi

S 11(
j 51

N

em j 2xj D N11 ~14!

andG( i ) is the gamma function.
In this way, we have transformed the integral equation

~2! into another one which contain well behaved functions to
apply Fourier analysis, since bothB andh tend to zero when
the respective variablesm i or m i2xi tend to6`.

B. Fourier analysis of the transformed equations:
Analytical solution of Eq. „2…

Applying Fourier transform to both sides of Eq.~13! and
using the FT convolution property~8!,

B̃~vW !5 p̃* ~vW !h̃~vW !. ~15!

Fortunately, the FT of functionh,

h̃~vW !5G~N11!E
2`

` E
2`

`

...E
2`

`

ei ~vW • x̄!

3

)
i 51

N

exi

S 11(
j 51

N

exj D N11 )
i

dxi , ~16!

can be computed analytically by introducing the change of
variablesuj5exj . Using the property,20 h̃(vW ) can be written
as

h̃~vW !5GS 12 i (
j 51

N

v j D )
j 51

N

G~11 iv j ! ~17!

and,B̃(vW ) becomes

B̃~vW !5 p̃* ~vW !GS 12 i (
j 51

N

v j D )
j 51

N

G~11 iv j !. ~18!

Notice that, regardless of the isotherm, Eq.~18! relates the
macroscopic information contained inB̃ ~which is calculated
from the competitive isotherm under study! to the micro-
scopic information contained in the affinity spectrum. Isolat-
ing p̃* in ~18! and recalling the inverse FT ofp̃* ,

p~2xW !5
1

~2p!N E
2`

` E
2`

`

...E
2`

`

e2 i ~vW •xW !p̃* ~vW !)
i

dv i ,

~19!

we obtain forp($ ln ki%),

p~$ ln ki%!5
1

~2p!N E
2`

` E
2`

`

...E
2`

`

ei ( j 51
N v j ln kj

3
B̃~vW !

GS 12 i (
j 51

N

v j D )
j 51

N

G~11 iv j !

)
i

dv i .

~20!

Equation~20! represents the sought inversion formula which
provides, for a given competitive isotherm, the affinity spec-
trum ~if it exists!.

For the particular case ofN51, expression~20! reduces
to

p~ ln k!5
1

2p E
2`

`

eiv ln k
B̃~v!

G~11 iv!G~12 iv!
dv

5
1

2p E
2`

`

eiv ln kB̃~v!
sinh~pv!

pv
dv ~21!

which can be seen as an alternative to the classical inversion
formula deduced by Sips.10 Although we do not have a direct
derivation of Sips inversion formula from the general equa-
tion ~21!, this expression can be easily tested, for instance,
with the Langmuir–Freundlich isotherm,

u5
~ k̄c!m

11~ k̄c!m
5

@e~m2 x̄!#m

11@e~m2 x̄!#m
, ~22!

wherem is the heterogeneity parameter for monocomponent
systems. The Fourier transform of functionB(m) for this
isotherm~as can easily be deduced from Appendix B, for the
particular case ofN51) is

B̃~v!5e1 iv x̄
sinhpv

m sinhS pv

m D G~11 iv!G~ i 2 iv!

5eiv x̄
pv

m sinhS pv

m D . ~23!

Replacing~23! in ~21! and using Ref. 19, the well-known
Sips distribution is obtained,
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p~ ln k!5
1

2p
E

2`

`

eiv~ ln k2 ln k̄!
sinhpv

m sinhS pv

m
D dv

5
sin~pm!

2p~cosh~m~ ln k2 ln k̄!!1cospm!
. ~24!

III. DETERMINATION OF THE AFFINITY SPECTRUM
UNDERLYING SOME ISOTHERMS

A. Affinity spectrum underlying NICCA isotherm

One of the most used multicomponent isotherms, espe-
cially in the field of environmental chemistry, is the NICCA
~nonideal competitive consistent adsorption! isotherm, which
can be written as21

u i5
ni

nH

~ k̄ici !
ni

(
j 51

N

~ k̄ jcj !
nj

F (
j 51

N

~ k̄ jcj !
njG p

11F (
j 51

N

~ k̄ jcj !
njG p ~25!

or, in terms of the variablem i5 ln ci , as

u i5
ni

nH

eni ~m i2 x̄i !

(
j 51

N

enj ~m j 2 x̄ j !

F (
j 51

N

enj ~m j 2 x̄ j !G p

11F (
j 51

N

enj ~m j 2 x̄ j !G p , ~26!

where x̄i52 ln k̄i and k̄i , ni , and p are parameters of the
isotherm. NICCA has been widely used to discuss the cation
binding to humic substances. It accounts for heterogeneous
competitive binding, beingk̄i related to the median affinity
for ion i, p describing a common distribution of affinities
seen by all the ions andni taking into account an ion specific
heterogeneity. The factorni /nH , whereH refers to the pro-
ton, was introduced as a more general way to keep thermo-
dynamic consistency from a previous expression of the
isotherm22 which required equalni values for all the ions in
order to satisfy thermodynamic consistency. In the current
generalized way, the maximum binding capacity is ion de-
pendent which could reflect some degree of multidentism. As
this effect suggests the use of local isotherms other than the
competitive Langmuirian one considered in this work, we
will restrict ourselves to the casenH5ni , ; i .

Let us then apply the inversion formula~20! to a bicom-
ponent system (N52) described by NICCA isotherm with
n15n25n. Computing the total coverageu and performing
the derivatives involved in~10!, B̃ corresponding to a bicom-
ponent NICCA isotherm@see Appendix B, Eq.~B12!# be-
comes

B̃~v1 ,v2!5ei ~v1x̃11v2x̃2!
sinh@p~v11v2!/n#

p sinh@p~v11v2!/np#

3G~11 iv1 /n!G~11 iv2 /n!

3G~12 i ~v11v2!/n!. ~27!

Replacing this expression into Eq.~20! and using the rela-
tionshipG(11z)5zG(z),20 we obtain

p~ ln k1 ,ln k2!

5
1

~2p!2

1

n3p E2`

` E
2`

`

ei ~v1~ ln k12 ln k̄1!1v2~ ln k22 ln k̄2!!

3
sinh@p~v11v2!/n#

sinh@p~v11v2!/np#

3
G~ iv1 /n!G~ iv1 /n!G~2 i ~v11v2!/n!

G~ iv1!G~ iv2!G~2 i ~v11v2!!
dv1 dv2 .

~28!

Recalling now the Diracd-function, whose integral represen-
tation can be written as

d~q2~v11v2!!5
1

2p E
2`

`

ei ~q2~v11v2!!u du, ~29!

Eq. ~28! rewrites

p~ ln k1 ,ln k2!5E
2`

`

f~ ln k12 ln k̄12u!

3f~ ln k22 ln k̄22u!c~u!du, ~30!

wheref andc are real-valued functions, defined as

f~u!5
1

~2p!n E2`

`

eiuq
G~ iq/n!

G~ iq !
dq ~31!

and

c~u!5
1

~2p!np E2`

`

eiuq
G~2 iq/n!

G~2 iq !

sinh~pq/np!

sinh~pq!
dq.

~32!

Figure 1 depicts the affinity spectrum corresponding to
NICCA isotherm as a function of log(k1) and log(k2) ~we take
decimal logarithms, as it is usually done in the literature!

with parametersn5p50.5 andk̄15 k̄251. The distribution
basically corresponds to that obtained numerically in Ref. 13
by using regularization methods, this supporting the suitabil-
ity of the numerical methods in the obtention of multicom-
ponent affinity spectra. Notice that the spectrum obtained is
symmetrical with respect to the linex12 x̄15x22 x̄2 , some-
thing that is directly shown by Eq.~30!, which remains in-
variant under the changex12 x̄1↔x22 x̄2 . The spectrum is
clearly elongated along this line, evidencing the fact that
NICCA isotherm implies nonzero correlation between the
binding energy of both components. Conversely, this elonga-
tion is greatly reduced when thep value is equal to 1, see
Fig. 2, indicating that this parameter plays an important role
in the binding correlation of the two components, as was
previously reported by Ref. 13. This result agrees with the
classical meaning given top, 0<p<1, which relates this
parameter with a common distribution of affinities seen by
all the ions,21,22 decreasing the width of the distribution asp
approaches 1.
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B. Affinity spectrum underlying the multicomponent
Frumkin isotherm

The inversion formula~20! can also be used to obtain the
spectrum corresponding to other multicomponent isotherms.
Among them, we have chosen the competitive Frumkin iso-
therm, which for a system of two components reads1

u15b1c1~12u12u2!exp~r11u11r12u2!,
~33!

u25b2c2~12u12u2!exp~r22u21r12u1!,

wherebi andr i j are parameters of the isotherm.
Unfortunately, the FT of functionB cannot be obtained

analytically, so that we have to compute numerically the FT’s
appearing in the inversion formula~20! to obtain the spec-
trum. The result is shown in Figs. 3~a! or 3~b!, where param-
etersb15b251, r115r2251, andr1250.5 have been used.
In this case, an ellipsoidal oblate shape is obtained for the
resulting spectrum. It can be observed that spurious oscilla-
tions appear, especially close to the top of the oblate which
we expect to be of a smoothed form with a maximum. It is
likely that these oscillations come from the fact that the af-
finity distribution of the Frumkin isotherm is nonzero only
over a finite domain of lnk. This behavior has also been
found in the inversion of the monocomponent Frumkin
isotherm.23

Notice also that the average logk along each axis of the
spectrum of Fig. 3 is not zero@see Fig. 3~b!# althoughb1

5b251 (logb150,logb250) in parallel to what happens in
the monocomponent Frumkin isotherm, whose mean binding
energy does not coincide with the logarithm of the parameter
b appearing in the isotherm.

IV. CENTRAL MOMENTS OF A MULTIDIMENSIONAL
AFFINITY SPECTRUM

As it has been commented above, the integral equation
~2! is an ill-posed problem forp($ ln ki%). This means that the
coverage predicted by different isotherms can be almost the
same over decades of the free metal concentration or, in
other words, the description of the binding does not require
all the information contained in the affinity spectrum. We can
say that there is a great instability in the recovered affinity
spectrum from~20! since the binding data do not contain
enough information for a precise recovering ofp($ ln ki%).

A robust strategy in these conditions is the determination
of the first central moments of the spectrum, which actually

FIG. 1. Two-dimensional affinity spectrum underlying NICCA isotherm for

n5p50.5, k̄15 k̄251 shown as a relief plot~a! or as a contour plot~b!. FIG. 2. Two-dimensional affinity spectrum underlying NICCA isotherm

for n50.5, p51, andk̄15 k̄251 shown as a relief plot~a! or as a contour
plot ~b!.
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contain the relevant information for the binding description.
Let us now solve this problem with a method that avoids the
recovering ofp($ ln ki%) from ~20!.

We begin recalling that the mean binding energy of com-
ponenti is proportional to

^ ln ki&5E
2`

` E
2`

`

...E
2`

`

lnkip~$ ln kj%!)
j

d ln kj , ~34!

where the symbol̂ & indicates average over the distribution
p. Likewise, the variance and covariance of the binding en-
ergy between two components is quantified by the so-called
covariance matrix,C of the probability distributionp, whose
components are defined as

Ci j 5^ ln ki ln kj&2^ ln ki&^ ln kj&. ~35!

Obviously,Cii is the variance of the binding energy of com-
ponenti,

Cii 5^ ln ki
2&2^ ln ki&

25s i
2, ~36!

while Ci j is the covariance between the binding energy of
componenti andj. The covariance quantifies to which extent
an increase of the affinity of a particular site for one compo-
nent, implies an increase of the affinity of such a site for the
others components.13,21,22Two limiting cases can be consid-
ered: when we have full correlation, for any site, there is a
fixed shift, a, between the binding energy of component 1
and the binding energy of component 2 at the same site, so
that the multicomponent affinity spectrum takes the form

p~ ln k1 ,ln k2!5p1~ ln k1!d~ ln k22 ln k12a!. ~37!

In this case, the one-dimensional affinity spectrum for both
components has the same shape while they may differ in the
location along the lnk axis. This situation is also called con-
gruent adsorption.

When the affinity spectrum is fully uncorrelated,Ci j

50 for iÞ j ; for a given site, there is no relation between the
affinity for component 1 and component 2, lnk1 and lnk2 are
statistically independent variables and the affinity spectrum
reads

p~ ln k1 ,ln k2!5p1~ ln k1!p2~ ln k2!. ~38!

For the most general case, some correlation is present and no
factorization of p(ln k1,ln k2) is possible. A dimensionless
measure of the correlation between the binding energy of
componenti and j is the correlation coefficient,Ri j ,

Ri j 5
Ci j

s is j
~ iÞ j !. ~39!

Obviously, for a two-component system, there is only one
correlation coefficient which we will label asR5R12

5R21.
On the other hand, for a given probability distribution

function, p, the mean and the covariance matrix can be un-
derstood as particular cases of the so-called cumulants of the
distribution function. The cumulant generating function,K,
for a given distributionp can be written as24

K~vW !5 ln p̃~vW !

5 lnF E
2`

` E
2`

`

ei ( j 51
N v j ln kjp~$ ln ki%!)

i
d ln ki G .

~40!

The cumulants,k jkl ... , of the distributionp($ ln ki%), are de-
fined as the coefficients appearing in the series expansion of
K(vW ),

K~vW !5 i(
j

k jv j1
i 2

2 (
jk

k jkv jvk

1
i 3

3! (jkl
k jklv jvkv l1¯ . ~41!

FIG. 3. Two-dimensional affinity spectrum shown as a relief plot~a! or as a
contour plot~b! corresponding to the Frumkin isotherm obtained by numeri-
cally computing Eq.~18!. The parameters areb15b251, r15r251.5, r12

50.5.
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Although a general relationship between cumulants and
central moments is not simple, it is a well-known result of
probability theory thatk i , the first order cumulant, is the
average of the distribution function,

k i5^ ln ki&, ~42!

while k i j , the cumulants of second order, are the elements of
the covariance matrix

k i j 5Ci j 5^ ln ki ln kj&2^ ln ki&^ ln kj&. ~43!

A practical fact on the computation of the central mo-
ments of the multidimensional distribution functions defined
as indicated in Eq.~2! can be noticed: if we are interested in
the first and second order moments, the knowledge of the full
affinity spectrum is not necessary. One only needs the spec-
trum of simpler systems where only one or two components
are present. This is easily shown by observing that, for in-
stance,

^ ln ki ln kj&5E
2`

` E
2`

`

...E
2`

`

ln ki ln kj p~$ ln kl%!)
l

d ln kl

5E
2`

` E
2`

`

ln ki ln kjq~ ln ki , ln kj !

3d ln kid ln kj , ~44!

where

q~ ln ki , ln kj !

5E
2`

` E
2`

`

...E
2`

`

p~$ ln kl%!d ln k1¯d ln ki 21

3d ln ki 11¯d ln kj 21d ln kj 11¯d ln kN ~45!

indicating that the computation of̂ln ki ln kj& does not re-
quire the knowledge of the full spectrump($ ln ki%), but of
only q(ln ki ,ln kj). Due to the particular form of the kernel of
Eq. ~2!, q(ln ki ,ln kj) is the affinity distribution function that
is found by taking in the multicomponent local isotherm all
the concentrations equal to zero except those of components
i and j. In effect

u i~0,0,...,0,ci ,0,...,0,cj ,...,0!

5E
2`

` E
2`

`

...E
2`

`

p~$ ln kl%!
kici

11kici1kjcj
)

l
d ln kl

5E
2`

` E
2`

`

q~ ln ki , ln kj !
kici

11kici1kjcj
d ln kid ln kj .

~46!

This means that obtaining the mean and covariance matrix
for multicomponent systems can be done from the study of
all the monocomponent systems and from the study of the
bicomponent systems where only the different couples of
components are present.

A. Calculation of the mean and covariance matrix
of the spectrum associated to a competitive isotherm

We can now take advantage of Eq.~18! to carry out the
calculation of the cumulants of multicomponent affinity
spectra. Taking logarithms at both sides of~18! we obtain

ln p̃* ~vW !5 ln B̃~vW !2(
j 51

N

ln G~11 iv j !

2 ln GS 12 i (
j 51

N

v j D . ~47!

Recalling that lnp̃*5(ln p̃)* , the left-hand side of~47! can
be related to the cumulants ofp as

ln p̃* ~vW !52 i(
j

k jv j1
i 2

2 (
jk

k jkv jvk

2
i 3

3! (jkl
k jklv jvkv l1¯ . ~48!

On the other hand,B has all the properties of a distribu-
tion function, as pointed out in Sec. II A. Thus, Eq.~47!
simply expresses the fact that the complex conjugate of the
cumulant generating function ofp($ ln ki%), is the cumulant
generating function ofB plus a function independent of the
particular isotherm under study. We can now expand both
sides of ~47! in terms of the Fourier set of variables,wi .
Expansion of the left-hand side~lhs! of ~47! leads to the
cumulants ofp($ ln ki%), Eq. ~48!, and the expansion of the
first term on the right-hand side~rhs! of ~47! leads to the
cumulants ofB,

ln B̃~vW !5 i(
i

k i
Bv i1

i 2

2 (
i j

k i j
Bv iv j

1
i 3

3! (i jk k i jk
B v iv jvk1¯ , ~49!

where the superscriptB recalls that these cumulants refer to
the B distribution at the same time that it allows to differen-
tiate both cumulants.

The expansion of the second term of the rhs of~47! can
be done using20

ln G~11z!52Cz1(
j 52

`
~2z! j

j
z~ j !, ~50!

whereC is the Catalan constant andz(z) is the Riemann’s
zeta function. Identifying in the resulting equation the terms
of the same power onwi , for the first two cumulants of the
affinity spectrum~mean and covariance matrix! we obtain

k i5^ ln ki&52k i
B52E

2`

`

m iB
~ i !~m i !dm i , ~51!

whereB( i )(m i) is the functionB corresponding to the mono-
component system obtained by taking all the concentrations
equal to zero except that of componenti.

Proceeding analogously, the covariance matrix is

k i j 5Ci j 5k i j
B2

p2

6
5Ci j

B2
p2

6
~ iÞ j ! ~52!
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and

k i i 5Cii 5k i i
B2

p2

3
5Cii

B2
p2

3
~ i 5 j !, ~53!

where the elementsCi j
B are

Ci j
B5E

2`

` E
2`

`

m im jB
~ i j !~m i ,m i !dm i dm j2k i

Bk j
B , ~54!

where B( i j )(m i ,m i) is the functionB corresponding to the
two-component system obtained by taking all the concentra-
tions equal to zero except those of componentsi and j.

Equations~51!–~53! give the mean binding energy and
the elements of the covariance matrix underlying any com-
petitive isotherm in terms of the isotherm parameters through
B, obtained from the derivatives of the isotherm, and without
requiring the knowledge of the affinity spectrum.

B. Binding correlation in NICCA and Frumkin
isotherms

First we are going to use the results presented above to
obtain the mean and the correlation matrix corresponding to
NICCA isotherm with n15n25n. Performing the corre-
sponding integrals we obtain

k i5^ ln ki&5 ln k̄i ~55!

and

Cii 5s i
25

p2

3 S 12n2p2

n2p2 D5
p2

3 S 12m2

m2 D , ~56!

Ci j 5
p2

6 S 22p22n2p2

n2p2 D ~ iÞ j !, ~57!

the correlation coefficient becoming

R5Ri j 5
22p22n2p2

2~12n2p2!
5

22p22m2

2~12m2!
. ~58!

The diagonal elements of the correlation matrix,Cii give
the variance of a Sips distribution with heterogeneity param-
eter m5np,18 in agreement with the fact that NICCA iso-
therm reduces to a Langmuir–Freundlich isotherm when
only one component is present. This means thatm5np is the
responsible of the heterogeneity of adsorbatei, a heterogene-
ity that is also present even in absence of the rest of compo-
nents.

In Fig. 4, the correlation coefficient, given by~58!, is
plotted as a function of the parameterp for different values
of m. Notice thatR is always positive ranging between 0.5
and 1, corresponding these limiting cases top51 and p
5m, respectively. Forp51, NICCA isotherm reduces to the
so-called Langmuir–Freundlich generalized isotherm

u i5

(
j 51

N

~ k̄ jcj !
m

11(
j 51

N

~ k̄ jcj !
m

~59!

for which ~58! prescribesR51/2, independently of them
value. This fact corresponds to the situation of minimum

correlation of binding between the different components al-
lowed by this isotherm. Forp5m, i.e., n51, we haveR
51, i.e., a situation of fully correlation, in agreement with
the original consideration ofp as a measure of the heteroge-
neity of the ligand, in contrast withm, a parameter ion de-
pendent which reflects the deviation of the local binding
from the ideal case (n51).21,22 Thus, if n51, the only one
source of heterogeneity comes from the ligand and is com-
mon for all the ions~described byp! leading to fully corre-
lation or congruent binding.

The correlation coefficient corresponding to a two-
component Frumkin isotherm is plotted as a function of the
interaction parameterr12, for different values ofr11 andr22

in Fig. 5. Notice that, while in the NICCA isotherm consid-
ered above (n15n25n) we have only two parameters~n and
p! to reproduce three independent statistical properties of the
spectrum~for instance, the two variances and the correlation
coefficient!, in this case we have three parameters to describe
them. In this sense, the present situation is more flexible,
which can be seen for instance in the values scanned by the
correlation coefficient, depicted in Fig. 5. Since an analytical
expression for the correlation coefficient is not available for
the two-component Frumkin isotherm, we have calculated it
from ~54! and ~39!, performing the integrals numerically.

FIG. 4. Correlation coefficient corresponding to NICCA isotherm as a func-
tion of parameterp, for different values of intrinsic heterogeneity parameter
m5np: z50.3 ~continuous line!; m50.5 ~dotted line!; m50.75 ~dashed
line!.

FIG. 5. Correlation coefficient corresponding to Frumkin isotherm as a
function of r12 , for r152 andr252 ~continuous line!; r152 andr251
~dotted line!; r152 andr250.5 ~dashed line!.
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Notice that, via a suitable selection of the parameters, any
value of the correlation coefficient can be achieved in this
case, according to the more flexible situation that we are
considering. On the other hand, although we do not have a
general condition for the achievement of the maximum level
of correlation (R51), we can see that forr125r115r22,
R51. In effect, when all the interaction parameters are
equal, all the components of the system behave likely from
the point of view of heterogeneity.

V. CONCLUDING REMARKS

We have undertaken the problem of obtaining the affin-
ity spectrum underlying multicomponent adsorption iso-
therms. The main difficulty lies in the fact that the integral
equation to be solved involves the integration over several
variables~as many as number of components can be adsorb-
ed!. Nevertheless, by rewriting the integral equation in a suit-
able manner, a general analytical solution can be found. This
implies the definition of a new function,B, basically aNth
derivative of the total macromolecular coverage, which has
the properties of a probability distribution function. By fur-
ther applying Fourier transform techniques, we have been
able to provide an inversion formula, which is the counter-
part to that given by Sips for one-component systems.

The analytical solution obtained has been applied to
NICCA isotherm, commonly used in environmental water
studies and an analytical expression for the underlying spec-
trum has been derived. The resulting spectrum agrees with
that obtained numerically in the literature by using least-
square regularization methods. The spectrum associated to
Frumkin isotherm is also computed, although in this case
numerical FT transform techniques have been used and some
spurious oscillations remain.

On the other hand, a method to obtain the main statisti-
cal properties of multicomponent affinity spectra underlying
competitive isotherms as a function of the isotherm param-
eters is presented. An expression for the cumulants of the
affinity spectrum in terms of the cumulants of the functionB
has been reported. These results lead to analytical expres-
sions for the mean and covariance matrix of NICCA iso-
therm, and, by performing the suitable numerical integra-
tions, to those of Frumkin isotherm. These results allow to
quantify the level of binding correlation among the different
adsorbing molecules.
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APPENDIX A: THE FUNCTION B „m¢ … CAN BE
CONSIDERED A PROBABILITY DISTRIBUTION
FUNCTION

The functionB(mW ) is defined as

B~mW !5~21!N11
]Nu

]m1]m2¯]mN
, ~A1!

whereu5( i 51
N u i is the total macromolecular coverage and

m i5 ln ci . If the macromolecular coverage can be expressed
by means of certain affinity spectrump($ ln ki%) we have

u~mW !5E
2`

` E
2`

`

...E
2`

`

p~$ ln ki%!

3

(
i 51

N

eln ki1m i

S 11(
j 51

N

eln kj 1m j D N11 )
i

d ln ki . ~A2!

Performing the derivatives indicated in~A1!, B(mW ) be-
comes

B~mW !5G~N11!E
2`

` E
2`

`

...E
2`

`

p~$ ln ki%!

3

)
i 51

N

eln ki1m i

S 11(
j 51

N

eln kj 1m j D N11 )
i

d ln ki . ~A3!

Since all the terms in the integrals appearing in~A3! are
positive, we haveB(mW ).0 for all them i values.

On the other hand, the integration of both sides of~A3!
with respectm1 ,m2 ,...,mN ,

E
2`

` E
2`

`

...E
2`

`

B~mW !)
j

dm j

5G~N11!E
2`

` E
2`

`

...E
2`

`

p~$ ln ki%!

35 E
2`

` E
2`

`

...E
2`

`
)
i 51

N

eln ki1m i

S 11(
j 51

N

eln kj 1m j D N11 )
j

dm j6
3)

i
d ln ki ~A4!

taking into account that
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E
2`

` E
2`

`

...E
2`

`
)
i 51

N

eln ki1m i

S 11(
j 51

N

eln kj 1m j D N11 )
j

dm j

5
1

G~N11!
~A5!

the normalization condition of the affinity spectrum, leads to

E
2`

` E
2`

`

...E
2`

`

B~mW !)
j

dm j51 ~A6!

which is the normalization condition forB.

APPENDIX B: FT OF FUNCTION B „m1 ,m2…

FOR THE NICCA ISOTHERM

The Fourier transform of functionB for the two-
component NICCA isotherm can be written as

B̃~v1 ,v2!52E
2`

` E
2`

`

ei ~v1m11v2m2!
]2

]m1]m2

3H @en~m12 x̄1!1en~m22 x̄2!#p

11@en~m12 x̄1!1en~m22 x̄2!#pJ dm1 dm2 ,

~B1!

where the definition ofB, Eq. ~10!, the expression of the
NICCA isotherm, Eq.~26! with nH5n15n2 , and the defini-
tion of FT, Eq.~7!, have been used.

Introducing the change of variablesy15n(m12 x̄1) and
y25n(m22 x̄2) the integral becomes

B̃~v1 ,wv2!5ei ~v1x̄11v2x̄2!E
2`

` E
2`

`

ei @y1~v1 /n!1y2~v2 /n!#

3F~y1 ,y2!dy1 dy2

5ei ~v1x̄11v2x̄2!F̃S v1

n
,
v2

n D , ~B2!

where

F~y1 ,y2!52
]2

]y1]y2
H @ey11ey2#p

11@ey11ey2#pJ . ~B3!

and F̃(v1 /n,v2 /n) is the FT ofF(y1 ,y2) whenv i /n label
the variables in the Fourier space.

Notice that the function@ey11ey2#p/(11@ey11ey2#p)
can be expressed as

@ey11ey2#p

11@ey11ey2#p 5E
2`

`

PSips~u1 ;p!
ey1e2u11ey2e2u1

11ey1e2u11ey2e2u1
du1

5E
2`

` E
2`

`

PSips~u1 ;p!d~u12u2!

3
ey1e2u11ey2e2u2

11ey1e2u11ey2e2u2
du1 du2 , ~B4!

wherePSips(u;p) is the Sips distribution function with zero
mean,

PSips~u;p!5
sin@pp#

2p~coshpu1cospp!
~B5!

which yields the Langmuir–Freundlich isotherm. Performing
now the derivatives in~B3!, the termF(y1 ,y2) becomes

F~y1 ,y2!52E
2`

` E
2`

`

PSips~u1 ;p!d~u12u2!

3
ey12u1ey22u2

~11ey12u11ey22u2!3 du1 du2 ~B6!

which is the convolution product of functions

f 1~x1 ,x2!5PSips~x1 ;p!d~x12x2! ~B7!

and

f 2~x1 ,x2!5
2ex1ex2

~11ex11ex2!3 . ~B8!

Hence, the Fourier transform of functionF(y1 ,y2) is the
product of the Fourier transform of these last two functions,

F̃~v1 ,v2!5 f̃ 1~v1 ,v2! f̃ 2~v1 ,v2!, ~B9!

where

f̃ 1~v1 ,v2!5
sinh@p~v11v2!#

p sinh@p~v11v2!/p#
~B10!

and

f̃ 2~v1 ,v2!5G~11 iv1!G~11 iv2!G~12 i ~v11v2!!.
~B11!

Equation~B10! is the FT of the generalized Sips distribution
~B5! for a two component system, and can be obtained using
Ref. 19. Thus, the Fourier transform of functionB(m1 ,m2),
Eq. ~B2!, becomes

B̃~v1 ,v2!5ei ~v1x̃11v2x̃2!F̃S v1

n
,
v2

n D
5ei ~w1x̃11w2x̃2!

sinh@p~v11v2!/n#

p sinh@p~v11v2!/np#

3G~11 iv1 /n!G~11 iv2 /n!

3G~12 i ~v11v2!/n!. ~B12!
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