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Affinity distribution functions in multicomponent heterogeneous
adsorption. Analytical inversion of isotherms to obtain affinity spectra
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Jaume Puy . .
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(Received 5 December 2003; accepted 24 February)2004

An analytical approach for the interpretation of multicomponent heterogeneous adsorption or
complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier
transform, applied to analyze the corresponding integral equation, leads to an inversion formula
which allows the computation of the multicomponent affinity spectrum underlying a given
competitive isotherm. Although a different mathematical methodology is used, this procedure can be
seen as the extension to multicomponent systems of the classical Sips's work devoted to
monocomponent systems. Furthermore, a methodology which yields analytical expressions for the
main statistical properties(mean free energies of binding and covariance matrdf
multidimensional affinity spectra is reported. Thus, the level of binding correlation between the
different components can be quantified. It has to be highlighted that the reported methodology does
not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance
of the binding energies of the different components. Nonideal competitive consistent adsorption
isotherm, widely used in metal/proton competitive complexation to environmental macromolecules,
and Frumkin competitive isotherms are selected to illustrate the application of the reported results.
Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are
obtained for the NICCA case. @004 American Institute of Physics.

[DOI: 10.1063/1.1710857

I. INTRODUCTION the binding free energy. Hence, once a concrete form for the
affinity spectrum is proposed, Efl) produces an analytical

The interpretation of the interactions of small molecules. th hich further b d to fit . tal set
with heterogeneous surfaces and/or macromolecules, both [gotherm which can further be used o fit an expenmental se

gas and solution phase, has been the subject of intensi COVErage versus concentration data.
research for the last decades owing to its great importance in N other cases, one could be interested in the knowledge
several scientific disciplines: environmental speciationof the affinity spectrum underlying an empirically proposed
studies' > gas/solid adsorptiof?® binding of ligands to bio- isotherm, which successfully describes the experimental in-
chemical receptor$, chromatographic studi€s,polymer  formation available. This inverse problem reduces to solving
sciencé®® etc. A current strategy to describe monocompo-the integral equatiofd) for p(Ink). An inversion formula to
nent adsorption consists in expressing the total macrosbtain p(Ink) for a given analytical isotherm was provided
molecular/surface coverageas a weighted superposition of py Sips in a pioneer work The formula has been widely
local Langmuirian isotherms:*° used for a long time in the interpretation of monocomponent
w kc % kc isotherms (such as Langmuir—Freundlich, Frumkin or
6(c)= f_xp’(k) Trkcdk= f_mp(m K) Trednk Temkin) in terms of a underlying affinity distribution
(1)  function!®**On the other hand, several numerical methods

where ¢ is the concentration of the adsorbed species an{ilave been applied to determipgin k) directly from a given

p’ (k) is the so-called affinity distribution function or affinity setof exp_ermjentai? versus Ing) data. Among these, th? use
spectrum, which expresses the probability density of havin%'c regularization methods to solve the integral equatibn
sites in the macromolecule/surface with binding stability?&came the subject of many works devoted to the analysis of
constant for the adsorbed species lying in betweemdk  heterogeneous monocomponent adsorption, both in gas and
+dk. Usually, as indicated in Eq1), the affinity spectrum  in solution phasé:**?
is represented in the logarithmic spacek,Iiproportional to The affinity spectrum approach can be straightforwardly
extended to multicomponent competitive adsorption, by con-
dAuthor to whom correspondence should be addressed; Electronic maiﬁidering the macromolecular/surface coverage of each com-
fmas@qf.ub.es ponenti, 6;(cq,C5,...,Cyn), dependent on the concentrations
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of all the N components of the system, as a superposition ofes. A procedure to obtain means and covariance matrices of

competitive Langmuirian isotherrhs e multidimensional affinity spectra in terms of the parameters
of competitive isotherms is given in Sec. 1V, and thereafter
B.(C1.Cpr... Cn) = f” jw fw p(Inky ks, ....Inky) applied to NICCA and Frumkin isotherms.
e 0T Il. FOURIER ANALYSIS OF MULTICOMPONENT
kici BINDING ISOTHERMS: AN INVERSION FORMULA
XN—H din kj . 2 TO OBTAIN THE MULTIDIMENSIONAL AFFINITY
j SPECTRA
j=1 A. Transformation of the integral Eq. (2) in order

to apply Fourier analysis

Nevertheless, the main obstacle for this generalization . .
Let us assume that the coverage of certain companent

lies in the multidimensional nature of the integral equationl9 b q i f multi
(2). This has resulted, in contrast with the equivalent treat- i({c}), can be expressed as a superposition of muilticom-

ment of monocomponents systems, in a lack of simple angonent Langmuirian isotherms, as KB) inc_iic_ates. In OTder
lytical results allowing an easy interpretation of empirical to aPp'y FOUI’I.eI’ transform techniques, |t.|s convenient to
isotherms in terms of an underlying affinity distribution rewrite Eq.(2) in terms of a new set of variables,

function. Regularization methods have been successfully ap- x;=—Ink;, 3
plied to the finding ofp(Ink;,Ink,,...,Inky) for two adsorb-
ing components in solutioH. However, the inverse problem
has not been analytically solved for the general case. A firsiyherex; is proportional to the binding free energy of com-
aim of this work is to provide, in Sec. I, a general analytical ponenti to the site andu; is proportional to the chemical
solution for Eq.(2), based on Fourier analysis, and to apply potential of component. In terms of these new variables,
it, in Sec. lll, to the finding of the affinity spectrum which Eq. (2) rewrites

generates nonideal competitive consistent adsorption o .

(NICCA) and competitive Frumkin isotherms. It is important gi(ﬁ)zf J' f p(—X)gi(a—)]] dx, (5
here to note that the choice of the local competitive isotherm ot - - i

appearing in the kernel of Eq), in the case of competitive \yhere vectorial notation, = (q,ta,....un) and X
adsorption, could be multiple. In this work we only under- =(X1,%,...Xy), have been used, and

take the problem of Langmuirian local adsorption, but if, for

Mi=|n Ci, (4)

instance, the molecules of one component bind to more that o eriTi
one site at the same timé&helate complexation other gi(h—%)= N ©®)
choices of the local adsorption isotherm would be requifed. 1+ 2 M X

Another question of interest in the characterization of the =1

binding to heterogeneous systems is determining the mi”iThus, Eq.(5) takes the form of a convolution equation.
mum information needed to successfully describe a set of - rqrier analysis provides an immediate solution for the
experimental adsorption data. This question arises from thg, rier transform(FT) of the affinity spectrum. Since several
very ill-posed nature of the integral equatidh), i.e., small  yefinitions of FT are commonly found in the literature, we

char?ges in the affinity spectrum lead to almqst the. SaM&dhere to the FT definition of an arbitrary functifnas in
binding curve. This means that, from a practical point ofgo¢ 19

view, only a part of the information contained in the affinity

spectrum is of interest in the interpretation and prediction of (&)= foc fx foo ei(‘:";)f(i)l_[ dx. )
the empirical information for a given range of concentra- P S i v
tions.

In the case of monocomponent systems, it has beelf €' the components of VECtor= (wy, ;. ....wy) are the
ariables in the Fourier space.

shown that in a wide range of concentrations correspondin Bearing in mind that the FT of the convolution of two
to intermediate coverages, only the mgaand the variance earing | : . . VoIt W
o2 of each peak of the affinity spectrum are relevant in thefunc.:tlons, is the product»of. their Fourier tran;forms and re-
description of the experimental binding curitbat is, differ- I(ie_}_lllnfg th?t ttr;qe FFT ot_)(—tx) |sfthe cgg)pllexdco?]ugate of the
ent isotherms with the same and o can reproduce with of p(X), the Fourier transform eads to

similar accuracy the same binding curvé Hence, the 0.(3)=P*(0)5i(&). (8)

knowledge ofu anda? is almost enough to characterize the ) ,
binding properties of the heterogeneous surface. Nevertheless, as functiogs and §; do not tend to zero in the

It is therefore expected that something similar will hold IMit #i—, we modify Eq.(5) in such a way that Fourier
for multicomponent systems, becoming relevant quantities it"lysis can be applied with well behaved functions.
this case not only the mean and variance of the spectrum of oM the total macromolecular coverage
the different components, but also the correlation of the bind- N
ing among them. The natural mathematical description of 0=E 0, 9
such statistical properties is the set of mean affiniiie® for =1
each componejptand the elements of the covariance matri-a new functionB can be defined as
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B(j)=(—1)N*1 Mo 10 and,B(®) becomes
o Ip1dpy I’ B N
This function,B(jZ), has the properties of a density of prob- ~ B(®@)= p*(m)F( 1- I,Zl ) 1:[ (1+iw)) (18

ability if the macromolecular coverage is expressed, as in the
present work, as a superposition of competitive langmuiriarNotice that, regardless of the isotherm, E#g) relates the
isotherms. As it is shown in Appendix AB(x) is positive  macroscopic information contained B1(which is calculated
for all values ofy;, from the competitive isotherm under stydyp the micro-
- scopic information contained in the affinity spectrum. Isolat-
B(#)=0 Vu, (11) ing p* in (18) and recalling the inverse FT @™,
and its integral over alk; is

fifl"'fﬁ(ﬁ)ﬂdmﬂ- (12) p(_i):(?_%)“flf:--r 0 (@)1 doy,

(19
As we will see, propertieél1) and(12) will play an impor-  we obtain forp({In k}),
tant role in Sec. Ill, in order to quantify the correlation in 1 o B
multicomponent afiinit.y specFra. . - p({Ink;})= NJ J J eiiszle Ink
Let us useB(a) in solving (5). Differentiating both 21) - —
sides of(5) with respect to eacluy,us,...,uy, the integral ~ .
equation becomes B(w)
X N N H dow;
. :fi f, f, p(—)?)h(,&—)?)l_i[ dx, (13 ( 2_‘, )]‘[1 I'(1+iw))
where (20)

Equation(20) represents the sought inversion formula which
_H et provides, for a given competitive isotherm, the affinity spec-
=1 (14 trum (if it exists).

h(i—-%)=T(N+1)

N N+1 For the particular case M= 1, expressiorf20) reduces
1+, eﬂiﬁ') to
andT (i) is the gamma function. p(Ink) = LJ’ giolnk B(o)
In this way, we have transformed the integral equation 2m ) F(1+|w)f(1—lw)
(2) into another one which contain well behaved functions to 1 (e sinh( o)
apply Fourier analysis, since bohandh tend to zero when = —f €N B(w) ——dw (21
the respective variablgs; or u;—x; tend to =, 2 J = mw
B. Fourier analysis of the transformed equations: which can be seen as an alternative to the classical inversion
Analytical solution of Eq.  (2) formula deduced by Sip€.Although we do not have a direct

derivation of Sips inversion formula from the general equa-
tion (21), this expression can be easily tested, for instance,
with the Langmuir—Freundlich isotherm,

Applying Fourier transform to both sides of E¢.3) and
using the FT convolution properig),

B(é):ﬁ*(é)h(é)- (15) , (?C)m [e(,u—f)]m (22)
Fortunately, the FT of functioh, = —— —_—
Y 1+ (ko)™ 1+[e7]m
T](J))=F(N+1)f f f gl wherem is the heterogeneity parameter for monocomponent
e 0T systems. The Fourier transform of functi@®{x) for this
isotherm(as can easily be deduced from Appendix B, for the
I1 e particular case oN=1) is
X _ dx , 16 - - — sinh7w
N N+11_i[ X (16) Blw)=e""*—— T (1+iw)[(i-iw)
+ €N msin?(ﬂ>
- m
can be computed analytically by introducing the change of o Tw
~ — alwX
variablesu;=¢€%i. Using the propert$® h(&) can be written =€ To\ (23
as msin
N
TN s : Replacing(23) in (21) and using Ref. 19, the well-known
h(o)=T"| 1—i i I'(l+iw; 1
(@) ( ,Zl “’J),-Hl (1+iw) an Sips distribution is obtained,
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Replacing this expression into ER0) and using the rela-

1 (= .~ sinhmw , ) 20 .
p(In k)=2—J glelnk=Ink)_—_do tionshipI'(1+z) =zI'(2),%° we obtain
m p( n 1 n 2)
sin( 7rm) _ 1 2%f® fw el (01(Inky=Inky) +wy(In ky—Inky))
= L (29 2m2n®p ) .. .

- 2m(cosiim(Ink—Ink)) + cosm)
sinH 7(w4+ w,)/N]

X—
IIl. DETERMINATION OF THE AFFINITY SPECTRUM sinf m(w;+ w,)/np]
UNDERLYING SOME ISOTHERMS

T(iwy /MT(iwy /)T (—i(w+ wy)/n)

A. Affinity spectrum underlying NICCA isotherm Tio)T ()T (—i(w+wy)) w; dw;

One of the most used multicomponent isotherms, espe- (29)
cially in the field of environmental chemistry, is the NICCA
(nonideal competitive consistent adsorpjitssotherm, which  Recalling now the Dirad-function, whose integral represen-

can be written &2 tation can be written as
S " 1 (= .
n (k)" 21 (kjcj)n"l 8(q— (w1t wy))= Zﬁwel(q%wﬁwz))u du, 29)
i:E - - — P 29 Eq. (28) rewrites
121( icp) 1+ zl (kjcj)“i]

or, in terms of the variable.,;=Inc¢;, as

p(Inky,Ink,) = Jm #(Ink;—Ink;—u)

X p(Inky—Inky—u) gp(u)du, (30)

- N 0
2 enj(#j*;j)
I

n: ani(ki -X))

6= i 26 where ¢ and ¢ are real-valued functions, defined as
i_n_ N N p’ ( )
H — — .
> i) 14| D enitki—x) 1 Gar)
=t = d(u)= Zmn _E Tq)dq (31
whereX;= —Ink andk;, n;, andp are parameters of the

isotherm. NICCA has been widely used to discuss the cation

binding to humic substances. It accounts for heterogeneous

. q1“(—iq/n) sinh(7rg/np)

u

competitive binding, being; related to the median affinity Pu)= (Zw)npf_we I(—iq) sinhmq)

for ion i, p describing a common distribution of affinities (32)
seen by all the ions ang taking into account an ion specific
heterogeneity. The factar, /ny, whereH refers to the pro- Figure 1 depicts the affinity spectrum corresponding to

ton, was introduced as a more general way to keep thermdNICCA isotherm as a function of log{) and logk,) (we take
dynamic consistency from a previous expression of thelecimal logarithms, as it is usually done in the literature
isothernt? which required equat; values for all the ions in  with parametersi=p=0.5 andk,=k,=1. The distribution
order to satisfy thermodynamic consistency. In the currenbasically corresponds to that obtained numerically in Ref. 13
generalized way, the maximum binding capacity is ion de-by using regularization methods, this supporting the suitabil-
pendent which could reflect some degree of multidentism. Asty of the numerical methods in the obtention of multicom-
this effect suggests the use of local isotherms other than thsonent affinity spectra. Notice that the spectrum obtained is
competitive Langmuirian one considered in this work, wesymmetrical with respect to the ling —x; =X,—X,, some-
will restrict ourselves to the casgy;=n;, Vi. thing that is directly shown by Ed30), which remains in-
Let us then apply the inversion formul20) to a bicom-  variant under the changg —X;<—X,—X5,. The spectrum is
ponent systemN=2) described by NICCA isotherm with clearly elongated along this line, evidencing the fact that
n;=n,=n. Computing the total coverageéand performing NICCA isotherm implies nonzero correlation between the
the derivatives involved il0), B corresponding to a bicom- binding energy of both components. Conversely, this elonga-
ponent NICCA isothernjsee Appendix B, Eq(B12)] be- tion is greatly reduced when thevalue is equal to 1, see

comes

E(wl,wz) _ ei(wl‘;(1+w2§2

Fig. 2, indicating that this parameter plays an important role
in the binding correlation of the two components, as was

_SInA 7(w; + wp)/n] previously reported by Ref. 13. This result agrees with the

psinf 7(w;+ wy)/np] classical meaning given tp, 0<p<1, which relates this
XT(1+iw /M1 +iws/ parameter with a common distribution of affinities seen by
(I+iw /ML +iwz/n) all the ions?*??decreasing the width of the distribution ps
XT'(1—=i(wq1+ wy)/n). (27)  approaches 1.
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FIG. 1. Two-dimensional affinity spectrum underlying NICCA isotherm for
n=p=0.5k;=k,=1 shown as a relief plafa) or as a contour ploth). FIG. 2. Two-dimensional affinity spectrum underlying NICCA isotherm
for n=0.5,p=1, andk,;=k,=1 shown as a relief plafa) or as a contour

plot (b).
B. Affinity spectrum underlying the multicomponent
Frumkin isotherm

The inversion fordrr_]uIQZO) Cﬁn alsol _be used to Ot.)ta'?] the Notice also that the average lkglong each axis of the
o o e oo e oot B soSpecium of Fig 3 ot zersee Fig B]athoughb
thermgwhich,for a system of two compc?nents réads =b,=1 (logh,=0,logh,=0) in parallel to what happens in

' the monocomponent Frumkin isotherm, whose mean binding

0,=Db1C1(1— 61— 6,)exp(pq161+ p1265), energy does not coincide with the logarithm of the parameter
(33 b appearing in the isotherm.
02=b3Co(1— 61— ;)X P2t + p1261),

whereb; and p;; are parameters of the isotherm.
Unfortunately, the FT of functiof® cannot be obtained IV. CENTRAL MOMENTS OF A MULTIDIMENSIONAL
analytically, so that we have to compute numerically the FT'Sy rriNiTY SPECTRUM

appearing in the inversion formul@0) to obtain the spec-
trum. The result is shown in Figs(&8 or 3(b), where param- As it has been commented above, the integral equation

etersh;=b,=1, p1;=p,,=1, andp,=0.5 have been used. (2) is an ill-posed problem fop({In k}). This means that the

In this case, an ellipsoidal oblate shape is obtained for theoverage predicted by different isotherms can be almost the
resulting spectrum. It can be observed that spurious oscillssame over decades of the free metal concentration or, in
tions appear, especially close to the top of the oblate whiclother words, the description of the binding does not require
we expect to be of a smoothed form with a maximum. It isall the information contained in the affinity spectrum. We can
likely that these oscillations come from the fact that the af-say that there is a great instability in the recovered affinity
finity distribution of the Frumkin isotherm is nonzero only spectrum from(20) since the binding data do not contain
over a finite domain of Ik This behavior has also been enough information for a precise recoveringpffIn k;}).

found in the inversion of the monocomponent Frumkin Arobust strategy in these conditions is the determination
isotherm?® of the first central moments of the spectrum, which actually
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Obviously,C;; is the variance of the binding energy of com-
ponenti,

Ci=(Ink?)—(Ink;)?=0?, (36)

while Cj; is the covariance between the binding energy of
component andj. The covariance quantifies to which extent
an increase of the affinity of a particular site for one compo-
nent, implies an increase of the affinity of such a site for the
others components:?12>Two limiting cases can be consid-
ered: when we have full correlation, for any site, there is a
fixed shift, «, between the binding energy of component 1
and the binding energy of component 2 at the same site, so
that the multicomponent affinity spectrum takes the form

p(log ki,log k2)

p(Inkq,Inky)=p1(Inky)d(Inks—Ink;— ). (37

In this case, the one-dimensional affinity spectrum for both
components has the same shape while they may differ in the
location along the Ik axis. This situation is also called con-
gruent adsorption.

When the affinity spectrum is fully uncorrelate@;;
=0 fori+j; for a given site, there is no relation between the
affinity for component 1 and component 2 kinand Ink, are
statistically independent variables and the affinity spectrum
reads

- ) p(Inky,Inky)=pi(Inky)pa(Inksy). (39

) For the most general case, some correlation is present and no
O factorization of p(Inkj,Ink,) is possible. A dimensionless
measure of the correlation between the binding energy of
component andj is the correlation coefficien®;; ,

1) a_io_j J .
" > Obviously, for a two-component system, there is only one
; ; , : correlation coefficient which we will label aRR=R;,
-1 0 1 logk 2 _

FIG. 3. Two-dimensional affinity spectrum shown as a relief pdpor as a O_n the other hand, for a glven'probablhty. distribution
contour plot(b) corresponding to the Frumkin isotherm obtained by numeri- function, p, the mean and the covariance matrix can be un-
cally computing Eq(18). The parameters ate,=b,=1, p;=p,=1.5, p1» derstood as particular cases of the so-called cumulants of the
=0.5. distribution function. The cumulant generating functidg,
for a given distributiorp can be written &4

contain the relevant information for the binding description. K(®)=InB(a)
Let us now solve this problem with a method that avoids the o o N
recovering ofp({Ink}) from (20). =In“ f =i p{InkH [T dink|.

We begin recalling that the mean binding energy of com- e '
ponenti is proportional to (40

U e “ _ _ _ The cumulantskjy,. , of the distributionp({Ink}), are de-
(Inki) ﬁxﬁw'”Jw Inkip({in k’})H dink;, (34 fined as the coefficients appearing in the series expansion of

- oo K(0),
where the symba{ ) indicates average over the distribution (@)

p. Likewise, the variance and covariance of the binding en- 2

ergy between two components is quantified by the so-called K(c?))=iz Kjwj+ EE Kjk0jwy
covariance matrixC of the probability distributiorp, whose J Ik
components are defined as i3

Cij=(Ink; Ink;)—(Ink;}{Ink;). (35) +§% Kk @] @k + (41
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Although a general relationship between cumulants and\. Calculation of the mean and covariance matrix
central moments is not simple, it is a well-known result of of the spectrum associated to a competitive isotherm
probability theory thatx;, the first order cumulant, is the

y LI ; We can now take advantage of H@8) to carry out the
average of the distribution function,

calculation of the cumulants of multicomponent affinity
spectra. Taking logarithms at both sides(b8) we obtain
N

INp*(&)=InB(a)— >, In['(1+iw))
j=1

K|:<|n ki>1 (42)

while «;; , the cumulants of second order, are the elements of
the covariance matrix

N
xij=Ciy =(Ink; Ink;) — (Ink;)(Ink;). (43) "”F(l—ijgl wj)- (47)

A practical fact on the computation of the central mo- Recalling that Iip* =(In)*, the left-hand side of47) can
ments of the multidimensional distribution functions definedbe related to the cumulants pfas
as indicated in Eq(2) can be noticed: if we are interested in

the first and second order moments, the knowledge of the full  InB* (@)= —i>, Kjwj+ %2 K] 0y

affinity spectrum is not necessary. One only needs the spec- ! Ik

trum of simpler systems where only one or two components i3

are present. This is easily shown by observing that, for in- - a% Kikl@jogo+- . (49
stance,

On the other hand3 has all the properties of a distribu-
w oo o tion function, as pointed out in Sec. Il A. Thus, E@?7)
(Inki Inkj)= f_wf_w---f_w In ki Ink;p({In k|})1_|[ dink simply expresses the fact that the complex conjugate of the
cumulant generating function gf({Ink}), is the cumulant

generating function oB plus a function independent of the
- f_wJ_w Ink; Ink;q(Ink; . Ink;) particular isotherm under study. We can now expand both
sides of(47) in terms of the Fourier set of variablew; .
xdInkidInk;, (44 Expansion of the left-hand sidéhs) of (47) leads to the
cumulants ofp({Ink}), Eq. (48), and the expansion of the
where first term on the right-hand sidehs) of (47) leads to the
cumulants ofB,
q(Ink;,Ink;) i2
w o % |n§(¢5)=i2 kBw;+ 52 Kﬁ’wiwj
=f f f p({Ink})dInk; --dInk;_4 ' |
'3
XdInkisy--dinkj_,dInkj q---dinky (45) T 314 2 Kl 0] it (49)

indicating that the computation gfnk; In kj> does not re- Where the superscrif@ recalls that these cumulants refer to
quire the knowledge of the full spectrup({Ink}), but of the B distribution at the same time that it allows to differen-
only q(Ink;,Ink;). Due to the particular form of the kernel of tiate both cumulants.

Eq.(2), q(Ink;, In ki) is the affinity distribution function that The expansion of the second term of the rhg4) can

is found by taklng in the multicomponent local isotherm all be done using

the concentrations equal to zero except those of components

Y|
i andj. In effect INT(1+2)= —Cz+2 u(( (50)
6,(0,0....,0¢;,0,...,0¢; ,...,0 whereC is the Catalan constant arfdz) is the Riemann’s
zeta function. Identifying in the resulting equation the terms
J_OJ_OC f p({Ink}) 1+k c, +k o H dink, of the same power ow;, for the first two cumulants of the

affinity spectrum(mean and covariance matyiwe obtain

kic; « _
wa 7ocq(|nk"|nk)l+kc+k delnkdlnk Ki:<|nki>:_’<iB:_JlmﬂiB(l)(/-"i)d/—Liv (51)

(46)  whereB()(y,) is the functionB corresponding to the mono-

component system obtained by taking all the concentrations
This means that obtaining the mean and covariance matrléqua| to zero except that of componént

for multicomponent systems can be done from the study of Proceeding analogously, the covariance matrix is
all the monocomponent systems and from the study of the 5 5

bicomponent systems where only the different couples of . g ™ 5 T . .

components are present. Kij=Cij=rij= g =Ci—g (%D (52
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and

5 772 5 71_2 - . R
Kii:Cii:Kii_?:Cii_? (i=]), (53

where the elementS}; are

Cﬁ: J;ooj—w'ui/*l’jB(ij)(/u“i i) Ay — KiBKJB' (54

where B (u;,u;) is the functionB corresponding to the

two-component system obtained by taking all the concentra- os-

tions equal to zero except those of componeraadj.
Equations(51)—(53) give the mean binding energy and oo

the elements of the covariance matrix underlying any com- ., o os 06 o7 os os o

petitive isotherm in terms of the isotherm parameters through

B, obtained from the derivatives of the isotherm, and withoutF!G. 4. Correlation coefficient corresponding to NICCA isotherm as a func-

. . tion of parametep, for different values of intrinsic heterogeneity parameter
requinng the knOWIedge of the afflmty spectrum. m=np: z=0.3 (continuous ling m=0.5 (dotted ling; m=0.75 (dashed

line).

B. Binding correlation in NICCA and Frumkin
isotherms correlation of binding between the different components al-

First we are going to use the results presented above tgWed by this isotherm. Fop=m, i.e.,n=1, we haveR

obtain the mean and the correlation matrix corresponding to- 1+ I-€-, @ situation of fully correlation, in agreement with
NICCA isotherm with n,=n,=n. Performing the corre- the original consideration gi as a measure of the heteroge-
sponding integrals we obtain neity of the ligand, in contrast witm, a parameter ion de-

o pendent which reflects the deviation of the local binding
ki=(Ink)=Ink; (55 from the ideal casen=1).2*?2Thus, ifn=1, the only one
source of heterogeneity comes from the ligand and is com-

and ) . :
mon for all the iongdescribed byp) leading to fully corre-
co— 2_772 1-n?p? B 72 [1—m? 56 lation or congruent binding.
i— o=y npz | 3| m? | (56) The correlation coefficient corresponding to a two-
component Frumkin isotherm is plotted as a function of the
c :w_z(z— pZ— n2p2) (%) (57) interaction parameter;,, for different values op,; andp,,
e n’p? Vs in Fig. 5. Notice that, while in the NICCA isotherm consid-
the correlation coefficient becoming ered aboverf; =n,=n) we have only two parametefs and
s 2 . p) to reproduce three independent statistical properties of the
R-R. — 2—p°—n°p® 2—p°—m (58) spectrum(for instance, the two variances and the correlation
=R;;=

2(1-n%p%)  2(1-m?) ° coefficieny, in this case we have three parameters to describe
them. In this sense, the present situation is more flexible,

The diagonal elements of the correlation mat@x, give : : .
. . o . ! which can be seen for instance in the values scanned by the
the variance of a Sips distribution with heterogeneity param-

eterm=np,® in agreement with the fact that NICCA iso- correlation coefficient, depicted in Fig. 5. Since an analytical
. L expression for the correlation coefficient is not available for
therm reduces to a Langmuir—Freundlich isotherm whe

i . . The two-component Frumkin isotherm, we have calculated it
only one component is present. This means tiatnp is the from (54) and (39), performing the integrals numericall
responsible of the heterogeneity of adsorlbhateheterogene- » P 9 9 Y-

ity that is also present even in absence of the rest of compo- 1.0 -

nents. " o s s yd
In Fig. 4, the correlation coefficient, given 4$8), is 087 .

plotted as a function of the parametefor different values S e e

of m. Notice thatR is always positive ranging between 0.5 °°7 A

and 1, corresponding these limiting casespte 1 andp
=m, respectively. Fop=1, NICCA isotherm reduces to the
so-called Langmuir—Freundlich generalized isotherm

N
21 (ki)™
L (59)

N
1+ E (ECJ' ) m 0.0 0!5 1?0 1?5 P2 zro
=1

. . . FIG. 5. Correlation coefficient corresponding to Frumkin isotherm as a
for which (58) prescribesR=1/2, independently of then  function of p,,, for p,=2 andp,=2 (continuous ling p;=2 andp,=1

value. This fact corresponds to the situation of minimum(dotted ling; p;=2 andp,=0.5 (dashed ling
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Notice that, via a suitable selection of the parameters, anpPPENDIX A: THE FUNCTION B(ux) CAN BE
value of the correlation coefficient can be achieved in thisCONSIDERED A PROBABILITY DISTRIBUTION
case, according to the more flexible situation that we arédUNCTION

considering. On the other hand, although we do not have a
general condition for the achievement of the maximum level
of correlation R=1), we can see that fop;,=p11=p22, N
R=1. In effect, when all the interaction parameters are B(i)=(—1)N*1 Jg"0
equal, all the components of the system behave likely from Ip1dpy - dun’
the point of view of heterogeneity.

The functionB() is defined as
(A1)

where =3, 6; is the total macromolecular coverage and
mi=Inc . If the macromolecular coverage can be expressed
by means of certain affinity spectrup{{Ink}) we have

V. CONCLUDING REMARKS

3 T I I TS
We have undertaken the problem of obtaining the affin- —wJmw Jow
ity spectrum underlying multicomponent adsorption iso- N

therms. The main difficulty lies in the fact that the integral 2 elnki+a;
equation to be solved involves the integration over several i=1
variables(as many as number of components can be adsorb- X N NT1 H dink;. (A2)
ed). Nevertheless, by rewriting the integral equation in a suit- 14 E Ink; + ui !
. . . e it H
able manner, a general analytical solution can be found. This iz1

implies the definition of a new functior, basically aNth
derivative of the total macromolecular coverage, which has Performing the derivatives indicated {A1), B(&) be-
the properties of a probability distribution function. By fur- -omes
ther applying Fourier transform techniques, we have been
able to provide an inversion formula, which is the counter- o re "
part to that given by Sips for one-component systems. B(ﬂ)ZF(N'f‘l)f f f p({Ink})
The analytical solution obtained has been applied to medme S

NICCA isotherm, commonly used in environmental water N

studies and an analytical expression for the underlying spec- [T enkitwi

trum has been derived. The resulting spectrum agrees with i=1

that obtained numerically in the literature by using least- X N N+1H dink;. (A3)
square regularization methods. The spectrum associated to <1+2 eln kj+,uj> [

Frumkin isotherm is also computed, although in this case i=1

numerical FT transform techniques have been used and some

spurious oscillations remain. _ _ ~ Since all the terms in the integrals appearing(A8) are
On the other hand, a method to obtain the main statistingsitive, we haveB()>0 for all the ; values.

cal properties of multicomponent affinity spectra underlying  on the other hand, the integration of both side<AS)
competitive isotherms as a function of the isotherm paramyith respectu;, us, ... 1,

eters is presented. An expression for the cumulants of the

affinity spectrum in terms of the cumulants of the functi®n o o -

has been reported. These results lead to analytical expre{- J J B(m) 1 du;

sions for the mean and covariance matrix of NICCA iso-~ ==~~~ - i

therm, and, by performing the suitable numerical integra- w0 o w

tions, to those of Frumkin isotherm. These results allow to =F(N+1)J f f p({Ink;})

qguantify the level of binding correlation among the different TESTE I

adsorbing molecules.

eln ki + K

1+2 e|ﬂkj+/.l,j

0 3 3 i=1
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j=1 )
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N

H e|r'| i+ ui

[ e M,
g e

1+2 e|r‘|kj+,u,j
=1

1

“T(N+1) (A5)

the normalization condition of the affinity spectrum, leads to

(AB)

Jlfﬁ;---me(ﬂ)l:[ duj=1

which is the normalization condition fd3.

APPENDIX B: FT OF FUNCTION B(u1,u5)
FOR THE NICCA ISOTHERM

The Fourier transform of functiorB for the two-
component NICCA isotherm can be written as

2

E(wl,wz):_joc j” ei(“’llLlJ""ZM)L
—o) o I

[en(ﬂl—;l)_ken(ﬂz—;z)]p
1+[en(ﬂ-1*><1)+eﬂ(ﬁ-2*x2)]p duy dpa,

(B1)

where the definition o, Eq. (10), the expression of the

NICCA isotherm, Eq(26) with ny=n;=n,, and the defini-
tion of FT, Eq.(7), have been used.

Introducing the change of variablgs=n(u,—X;) and
yo,=n(us—X,) the integral becomes

E(wl’sz):ei(ﬂu;l*wz;z)j f ellyi(e1/n)+ys(wy /)]

XF(y1,y2)dy:dy,

:ei(w171+w272)'|§(ﬂ,2), (B2)
n n
where
92 [eY1+ eY2]P
F(yliyZ):_ &ylay2‘1+[eyl+ey2]p]- (BS)

andF(w,/n,w,/n) is the FT ofF(y;,y,) whenw; /n label
the variables in the Fourier space.

Notice that the functione’1+eY2]P/(1+[eY1+eY2]P)
can be expressed as

[eV1+eY2]P o eVie Ui @Y¥2e U1
1+[ey1+ eYz]P = fﬁwpsips(ulap) 1+ eYie Ui4 @¥2e U1

du,

_ f:c J:PSipS{ul;p)é(ul—UZ)

eYigTUi4 @Y2e~ U2
“T+elie itee =2

du; dus, (B4)
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sin mp]
sipd UiP) 27(coshpu+ cosmp) (B5)

which yields the Langmuir—Freundlich isotherm. Performing
now the derivatives i{B3), the termF(y,,y,) becomes

F(y1,y2)= Zf: f:c Psipd U1;p) 6(Up—Uy)

eY1~Uigy2— Uz

X(1+eyl—ul+ey2—u2)3duldu2 (86)
which is the convolution product of functions
f1(X1,X2) = Psipd X1;P) 6(X1—X>) (B7)
and
2e*1e*2
fa(X1,%2) = (116163 (B8)

Hence, the Fourier transform of functiéi{y,,y,) is the
product of the Fourier transform of these last two functions,

Flo1,02)=T1(01,0,)T5(01,0,), (B9)
where

- sin m(wq+ w5)]

f(01,02) = o o+ @p)Ip] (B10)
and

’fz(a)l,wz)zr(1+|(1)1)F(1+|(1)2)F(1_|(w1+ (,()2))
(B11
Equation(B10) is the FT of the generalized Sips distribution
(B5) for a two component system, and can be obtained using
Ref. 19. Thus, the Fourier transform of functi8fwq,w>),
Eq. (B2), becomes
w1 W3

E , :ei(w1’>~(1+w2’)~(2)'|§ —, =
(w1,07) n'n

Sini (w1 + w,)/N]
psinH 7(w,+ w,)/np]
XT'(1+io /T (1+iwy/n)

—¢ (W1Xq +WoXp)

XT(1=i(w1+ wy)/n). (B12)
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