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The concept of conditional stability constant is extended to the competitive binding of small
molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional
affinity spectrum �CAS�. The CAS describes the distribution of effective binding energies
experienced by one complexing agent at a fixed concentration of the rest. We show that, when the
multicomponent system can be described in terms of an underlying affinity spectrum �integral
equation �IE� approach�, the system can always be characterized by means of a CAS. The
thermodynamic properties of the CAS and its dependence on the concentration of the rest of
components are discussed. In the context of metal/proton competition, analytical expressions for the
mean �conditional average affinity� and the variance �conditional heterogeneity� of the CAS as
functions of pH are reported and their physical interpretation discussed. Furthermore, we show that
the dependence of the CAS variance on pH allows for the analytical determination of the correlation
coefficient between the binding energies of the metal and the proton. Nonideal competitive
adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the
possibility of using CAS when the IE approach does not apply �for instance, when multidentate
binding is present� is explored. © 2006 American Institute of Physics. �DOI: 10.1063/1.2162876�
I. INTRODUCTION

Binding of small molecules to heterogeneous surfaces
and macromolecules is a matter of fundamental interest in
several fields of theoretical and applied chemistry. For in-
stance, in the field of environmental chemistry, the bioavail-
ability of nutrients and contaminants is determined by the
complexation/adsorption properties of such substances to
different particles, colloids, organic matter, and small
ligands.1–7 Adsorption phenomena in industrial processes of
gas separation have led to an increasing research activity on
the role of heterogeneity in the adsorption properties of the
surfaces of interest.8–10 In several other disciplines,
such as biochemical substract-ligand interactions,11

chromatography,12 or polymer science,13,14 the heteroge-
neous binding also plays a relevant role.

Although several theoretical approaches to describe the
heterogeneous adsorption have been proposed,15 we focus
here in the so-called affinity spectrum or integral equation
�IE� approach. The IE approach is based on characterizing
the ligand �a surface or a macromolecule� by a distribution of
binding constants called affinity spectrum, which provides
the fraction of sites with binding equilibrium constant lying
in between the values k and k+dk. Hence, the coverage, i.e.,
the total fraction of occupied sites, is given by a weighted
superposition of Langmuirian isotherms,8,9,16
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��c� = �
−�

�

p�log k�
kc

1 + kc
d log k . �1�

Usually, as indicated in Eq. �1�, the affinity spectrum is
given in terms of log�k�, which is proportional to the binding
free energy.

Although such an approach has been widely used, in
many systems of interest two or more components compete
for the same macromolecular/surface sites. For instance, in
natural waters the competition between the metal ion and the
proton is in most cases unavoidable. A straightforward gen-
eralization of the affinity spectrum methodology to multi-
component systems relies on the definition of a multidimen-
sional affinity spectrum.9,17,18 The binding properties of the
system are then described by a superposition of multicompo-
nent Langmuirian isotherms,

�i�c1,c2,…,cN� = �
−�

� �
−�

�

¯ �
−�

�

p�x1,x2,…,xN�

�
kici

1 + �
j=1

N

kici

dx1dx2 ¯ dxn, �2�

where ki and ci represent, respectively, the concentration and
the binding stability constant for component i, and xi

=log�ki�. Once a particular functional form for the affinity

spectrum is suggested, the integrals appearing in �1� and �2�
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can, in principle, be performed and a binding isotherm can
be obtained.9,15,17

On the other hand, sometimes one could be interested in
the inverse problem: the finding of the affinity spectrum em-
bedded in a suitable binding isotherm. For monocomponent
systems, the inverse problem was analytically solved by Sips
in his classical analysis of binding to heterogeneous
surfaces.16 Numerical regularization techniques have also
been successfully applied to solve the inverse problem from
experimental binding data.19,20 For multicomponent systems,
the n-dimensional nature of the integrals appearing in �2�
complicates the interpretation of the binding isotherms in
terms of an underlying affinity spectrum. However, the use
of a multidimensional affinity spectrum is especially interest-
ing, since it allows characterizing the binding in terms of the
moments of this distribution. In addition to the mean values,
which characterize the mean binding affinity, the variance
provides information on the heterogeneity of the binding,
i.e., on the dispersion of the binding affinities. Finally, the
covariance measures the correlation between the affinity of
the different components for a given site. For instance, in the
context of metal-macromolecule complexation, when large
values of the affinity of the proton occur together with large
values for the affinity of the metal, the correlation is positive.
When a large affinity value for the proton does not imply a
large or low affinity value for the metal there is no correla-
tion and we say that the two binding energies are
independent.17,21

An analytical solution of the integral equation �2� has
been reported in a recent paper.22 Thus, an analysis of some
multicomponent isotherms, such as nonideal consistent com-
petitive adsorption17,23 �NICA� and Frumkin isotherms,24 in
terms of an underlying affinity spectrum has been reported.
In the same paper, a way to obtain the main statistics �mean,
variances, and covariances� of the multidimensional affinity
spectra avoiding the detailed knowledge of the multidimen-
sional spectrum was described.

Here we present an alternative �and complementary� ap-
proach to the study of multicomponent adsorption. A classi-
cal methodology in analytical chemistry to deal with multi-
component binding lies in the definition of the so-called
conditional equilibrium constants.25 Conditional equilibrium
constants allow considering a multicomponent system as a
monocomponent one whenever the concentrations of the rest
of components are kept constant. This is particularly useful
for those systems in which only the concentrations of one �or
more� of the species is, in equilibrium, present in a large
range of values. For instance, in some natural waters, cal-
cium and proton concentrations can approximately be taken
as constants, while the concentrations of contaminants and
heavy metal ions vary strongly depending on the presence or
not of a pollution source.1,2 Conditional binding properties
have indeed been used in a number of works. For instance,
stability constants restricted to some fixed pH at a given
ionic strength value have been reported in the literature for
the binding of metal ions to synthetic or natural
macromolecules.7,26 However, the theoretical extension of
this procedure to deal with heterogeneous ligands is still

lacking.
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The aim of the present work is to explore the possibility
of generalizing the concept of conditional equilibrium con-
stant to heterogeneous systems. This generalization leads to
the definition of the conditional affinity spectrum �CAS�. Al-
though the ideas here presented can be easily extended to
other experimental situations, we will use the environmental
terminology and restrict ourselves to metal/proton competi-
tion. In Sec. II, the CAS is defined as a natural generalization
of a conditional equilibrium constant and the physical inter-
pretation of such distribution is provided. The results are
further applied to obtain the CAS associated to the NICA
isotherm. In Sec. III, we analyze the main statistical proper-
ties of the CAS, i.e., its mean and variance, and their depen-
dence on the pH value. In Sec. IV, we present a new meth-
odology to obtain the main statistics of the multidimensional
affinity spectra from extrapolation of the statistics of the
CAS. In this way, the computing of multiple integrals can be
avoided, and we are able to analytically obtain the statistics
corresponding to NICA and Frumkin competitive isotherms.
Finally, Sec. V shows that, although the existence of the
multidimensional affinity spectrum guarantees the existence
of the CAS, the CAS can also be used in cases where there is
no multidimensional affinity spectrum, as defined in Eq. �2�.
Two of such situations are analyzed: �i� some sites bind se-
lectively to only one component, and �ii� mono- and multi-
dentate metal bindings coexist.

II. THE CONDITIONAL AFFINITY SPECTRUM

Let us first consider the simplest situation in which an
arbitrary site, S, of the surface or macromolecule can be
occupied by either the proton, M1, or a metal ion, M2 present
in the solution. When the sites are identical and independent,
two equilibrium constants, k1 and k2, can be associated with
these binding processes,

S + M1�
k1

M1S, S + M2�
k2

M2S . �3�

The metal coverage, i.e., the fraction of sites occupied
by the metal, is given by the well-known competitive Lang-
muirian isotherm,

�2 =
k2c2

1 + k1c1 + k2c2
, �4�

where c1 and c2 are the free proton and free metal concen-
trations, respectively. Dividing by 1+k1c1 both the numera-
tor and the denominator, Eq. �4� can be rewritten as

�2 =
�k2/�1 + k1c1��c2

1 + �k2/�1 + k1c1��c2
=

k��c1�c2

1 + k��c1�c2
, �5�

where k��c1�=k2 / �1+k1c1� is the well-known conditional
stability constant commonly used in analytical chemistry.
Notice that k��c1� evidences that the “effective” affinity of a
given site for a metal ion at some fixed pH depends on the
pH value. Equation �5� indicates that, by using k�, the mul-
ticomponent system has been transformed, from a practical
point of view, into an equivalent effective monocomponent

one.
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As usual in the literature, it is convenient to rewrite the
expressions in terms of logarithms of the stability constants,
since the resulting terms can be easily related to free energy
by simply multiplying it by a factor −RT ln 10. Accordingly,
log k��c1� can be rewritten as

x� = log k��c1� = x2 − log�1 + k1c1� . �6�

Two terms can be clearly identified in expression �6�.
The first one, x2, is associated to the “intrinsic binding free
energy,” that is, the free energy of the binding of a metal ion
in absence of protons. �Notice that the second term vanishes
when c1=0, i.e., at high enough pH values.� On the other
hand, the term −log�1+k1c1� can be related to the average
work needed to perform the necessary exchange of the pro-
ton by the metal in order to complex the macromolecular
site. This exchange work �given by RT�ln 10�log�1+k1c1��
increases as the proton concentration increases, and, as a
consequence, the conditional equilibrium constant is a de-
creasing function of c1.

Let us obtain the distribution p��x� ;c1� of the effective
stability constants, seen by a metal ion in the presence of a
heterogeneous ligand, i.e., the density of sites with effective
affinity x�=log k� at a given pH. From now onwards, we will
refer to this distribution as the CAS.

The probability of finding a macromolecular site having
affinity for the proton lying in between x1 and x1+dx1 and
affinity for the metal ion in between x2 and x2+dx2 is, ac-
cording to �2�, given by

p�x1,x2�dx1dx2. �7�

Writing x2 in terms of the conditional affinity x�, as
given by Eq. �6�,

p�x1,x2�dx1dx2 = p�x1,x� + log�1 + k1c1��dx1dx�. �8�

Since we are interested in the metal affinity, regardless
of the proton affinity, we integrate �8� for all the x1 values.
This operation produces the conditional affinity spectrum
which can then be written as

p��x�;c1� = �
−�

�

p�x1,x� + log�1 + k1c1��dx1. �9�

Equation �9� relates the CAS to the multidimensional
affinity spectrum underlying multicomponent complexation.
Notice that, according to �9�, the existence of multidimen-
sional affinity spectrum ensures the existence of the CAS.
Therefore, the existence of the latter is a necessary condition
for the existence of the former. However, the converse as-

sumption might not be true: conditional affinity spectra could
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be realistic for conditions under which a multidimensional
affinity spectrum, as defined in Eq. �2�, cannot be assumed.
This possibility will be investigated in Sec. V.

In terms of p��x� ;c1�, the metal coverage, using Eqs. �2�
and �9�, can be rewritten as

�2�c1,c2� = �
−�

�

p��x�;c1�
k�c2

1 + k�c2
dx�, �10�

i.e., the metal coverage of the multicomponent system has
been expressed by an integral equation corresponding to a
monocomponent one. As a consequence, all the methods,
both numerical and analytical, suggested in the literature to
solve the integral equation �1� can then be applied to find the
conditional affinity spectrum, bearing in mind that the result-
ing spectrum depends on the proton concentration, c1. This
indicates, for instance, that the CAS can be obtained directly
from the experimental binding data without the knowledge
of the underlying multidimensional affinity spectrum.

Figure 1 illustrates the computation of the conditional
affinity spectrum from the multidimensional one. The start-
ing point is the multidimensional affinity spectrum depicted
as a three-dimensional �3D� plot in Fig. 1�a� and as a contour
plot in Fig. 1�b�. As p��x� ;c1� is the density of sites of a
given fixed effective affinity x�, we have to integrate the
multidimensional spectrum over the curve x2−log�1
+ex1+�1�=x�, where x� is kept constant, to obtain p��x� ;c1�,
as Eq. �9� indicates. For a fixed c1, lines for different con-
stant x� values are plotted in Fig. 1�b�. Notice that for low
enough x1 values, all the lines are parallel with ordinate at
x1→−� given by the constant x�. Increasing x1, the curves
move towards higher x2, this indicating that stronger com-
plexing sites are required in order to compensate for the in-
creased work needed to extract the proton.

Let us apply the procedure above developed to find the
CAS associated to the NICA. This isotherm is widely used to
describe the competitive binding of metal ions to natural
organic matter in environmental chemistry. The metal cover-
age is then expressed as23,27,28

�2�c1,c2�

=
n2

n1

�k̄2c2�n2

�k̄1c1�n1 + �k̄2c2�n2

��k̄1c1�n1 + �k̄2c2�n2�p

1 + ��k̄1c1�n1 + �k̄2c2�n2�p
.

�11�

We will restrict ourselves to the case n1=n2=n, a condi-
tion required for the existence of a multidimensional affinity
spectrum underlying NICA isotherm �see, for instance, Refs.
17 and 20�. So proceeding, we attach to the interpretation of
the NICA isotherm where both ni and p are heterogeneity
parameters related to the particular ion and to the ligand,
respectively.21,28 In order to obtain the CAS corresponding to
the metal we have to consider the proton concentration as a

fixed parameter of the system, and further solve the integral
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equation �1� for p�x� with ��c� given by �11�. By using com-
plex variable analysis, the inversion of a monocomponent
isotherm is straightforward. Using the inversion formula pro-
posed in Refs. 16 and 29, bearing in mind that proton con-
centration must be taken as a constant, the underlying affin-
ity spectrum is given by16

p��x�;c1� = �ln 10�k��Im
�2�c1,z�

z
�

z=−1/k�
, �12�

where x�=log k� , z is a variable in the complex plane and

“Im” represents the operation “take the imaginary part.” Af-

Downloaded 04 Mar 2013 to 193.144.12.130. Redistribution subject to AIP lic
ter some algebra, Eq. �12� applied to the NICA isotherm
leads to

p��x�;c1� =
ln 10

�

�k̄2/k��nMp−1

1 + M2p + 2M cos�p��

��sin��n − �1 − p��� + Mp sin��n − ��� ,

�13�

FIG. 1. �a� Three-dimensional plot of
the multidimensional affinity spectrum
underlying NICA isotherm. Param-

eters: k̄1=105 , k̄2=107 , n1=n2=0.5, p
=0.5. �b� Affinity spectrum of �a� rep-
resented as a contour plot. Iso-x�
curves for log k�=2 �a�, log k�=4 �b�,
log k�=6 �c�, and pH=4 are also de-
picted in the figure.
where
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M�c1,k�� = ��k̄1c1�2n + �k̄2/k��2n

+ 2�k̄1c1�n�k̄2/k��ncos��n��1/2 �14�

and

cos��� =
�k̄1c1�n + �k̄2/k��n cos��n�

M
. �15�

A pictorial representation of the procedure is given in Fig. 2:
the initial information consist in a set of metal binding
curves for different pH values �see Fig. 2�a��. In the illus-
trated case we have used the NICA isotherm with parameters
n1=n2=n=0.4. Each of such binding curves can now be re-
garded as a monocomponent binding isotherm for the metal,
to which the usual inversion procedures can be applied. Us-
ing Eq. �13�, a set of affinity spectra, one for each pH value
�see Fig. 2�b��, have been computed. It can be observed that,
in lowering the pH value, the CAS is shifted towards lower
affinities indicating that the work required to exchange pro-
tons is increasing. Finally, for high enough pH values, the
resulting spectra tend to collapse converging to a Sips distri-
bution, since only one component �the metal ion� is being

complexed. Actually, taking c1=0 in expression �13�, with

Downloaded 04 Mar 2013 to 193.144.12.130. Redistribution subject to AIP lic
n1=n2, a Sips distribution function with average affinity k̄2

and heterogeneity parameter m=n2p is recovered,

p��x�;c1 = 0� =
ln 10

�

sin��m�

�k̄2/k��−m + �k̄2/k��m + 2 cos��m�

�16�

in agreement with the fact that NICA reduces to a Langmuir-
Freundlich isotherm when only one component is present.17

III. MEAN AND VARIANCE OF THE CAS:
CONDITIONAL AFFINITY AND CONDITIONAL
HETEROGENEITY

In the previous section we have seen that a multicompo-
nent system can be treated as an equivalent monocomponent
one by keeping constants the concentrations of the rest of
components. This has led to the definition of the conditional
affinity spectrum of this ion. On the other hand, as it has
been pointed out previously,30 the mean and the variance of a
one-dimensional affinity spectrum are the parameters that al-
most determine the coverage at a wide range of concentra-
tions of the complexing ion, i.e., very different affinity spec-

FIG. 2. �a� Binding curve �2 vs log�c2� in a system
where two cations �proton denoted as 1 and a metal ion
denoted as 2� compete for the binding sites at different
pH values: pH=2 �a�, pH=4 �b�, pH=6 �c�, pH=8 �d�,
pH=9 �e�, and pH=12 �f�. The binding curves corre-

spond to a NICA isotherm with k̄1=105, k̄2=107, n1

=n2=0.4, and p=0.5. �b� Conditional affinity spectra
underlying the binding curves depicted in �a� indicating
the effective distribution of affinities seen by the metal
ion at the corresponding proton concentration.
tra sharing a common mean and variance lead to the same
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coverage at a very wide range of concentrations. In the same
way, for a fixed pH and concentration of the rest of compet-
ing binding ions, the CAS distribution exhibits some mean
affinity and a certain heterogeneity. The variance of the CAS
distribution is a measure of this heterogeneity. Let us analyze
the dependence of the mean and the variance of the CAS on
the pH �the same procedure can be used to obtain the depen-
dence of these statistics on the concentration of the other
competing ions� and how this dependence can be interpreted
in terms of the underlying binding events.

A. Mean of the CAS

The mean of the CAS can be calculated as

�x�	C = �
−�

�

x�p��x�;c1�dx�, �17�

where here and in the rest of this work, the symbol �	C is
used to denote the average over the conditional affinity spec-
trum while �	 will indicate the average over the two-
dimensional affinity spectrum.

Replacing the expression for the CAS, �9�, in �17�,

�x�	C = �
−�

� �
−�

�

x�p�x1,x� + log�1 + k1c1��dx�dx1. �18�

By using the change of variables x2=x�+log�1+k1c1�, and
further integrating over x2, Eq. �18� becomes

�x�	C = �x2	 − �
−�

�

log�1 + k1c1�p1�x1�dx1, �19�

where �x2	 is the mean affinity of the metal, �x2	
=
−�

� 
−�
� x2p�x1 ,x2�dx1dx2, and p1�x1�=
−�

� p�x1 ,x2�dx2 is the
affinity spectrum of the proton in absence of metal ions. On

the other hand, Eq. �19� can be rewritten as
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�x�	C = �x2	 − �
−�

log c1 ��
−�

� k1c1

1 + k1c1
p1�x1�dx1�d log c1.

�20�

Finally, noting that the term between brackets in Eq. �20� is
the proton coverage in absence of metal ions, �1�c1 ,0�, we
obtain the sought expression for the conditional average
affinity,

�x�	C = �x2	 − �
−�

log c1

�1�c1,0�d log c1. �21�

The resulting expression has a general validity, restricted
only to the suitability of the IE approach to describe the
thermodynamic properties of the system. A clear physical
interpretation of the conditional average affinity emerges
from Eq. �21�. It indicates that the mean affinity seen by the
metal ion at some pH is lower than the mean affinity that
would experience in absence of protons. The substracting
term, the second term of the right-hand side �rhs� of �21�,
increases as the proton concentration increases and just re-
flects the increasing work that the metal has to do to be
bound, i.e., the interchanging energy.

Furthermore, expression �21� has a remarkable property.
Notice that in order to know the average affinity for the
metal at a given pH, we only need a constant, �x2	, and the
proton titration curve of the ligand in absence of metal. As a
consequence, the mean conditional affinity of any metal is,
up to an additive constant, independent of the nature of the
metal, provided that Eq. �2� is accepted to describe the ther-
modynamic properties of the system. This fact is illustrated
in Fig. 3, where we have plotted the conditional average
affinity as a function of the pH, for systems in which proton
binding is described by a Langmuir-Freundlich isotherm.
The different curves correspond to different ions, whose
binding properties can be, in principle, completely different,
and thus be characterized by very different multicomponent

FIG. 3. Mean of the CAS correspond-
ing to a NICA isotherm as a function
of pH. Parameters: n=0.5, p

=1, k̄1 /M−1=105 and k̄2=107 �a�, k̄2

=109 �b�, k̄2=1011 �c�, k̄2=1013 �d�.
isotherms. However, in agreement with the result �21�, the
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curves only differ in a constant value, characteristic of the
metal ion under study. Finally, it is worth noting that, since
�x�	C and the 
−�

log c1�1�c1 ,0�d log c1 can be experimentally
determined in an independent way, Eq. �21� can be regarded
as a test of the validity of the integral representation �2�, by
simply noting that the addition �x�	C+
−�

log c1�1�c1 ,0�d log c1

should be independent of the pH and equal to �x2	.

B. Variance of the CAS

A similar approach can be applied to obtain the variance
of the conditional affinity spectrum, which is defined as

��2�c1� = �x�2	C − �x�	C
2 �22�

and measures the spread of the conditional affinity values. As
it happened with the conditional average affinity, �x�	C, the
quantity ��2�c1� can be obtained directly from experimental
data or from the multicomponent isotherm under study. In a
previous paper, we showed that the variance of any affinity
spectrum can be directly obtained from the isotherm, without
the detailed knowledge of the underlying affinity spectrum.22

�2 = �
−�

�

�log c�2 ���c�
� log c

d log c −
��/ln 10�2

3
. �23�

By trivially adapting this result to the present situation, ��2

can be expressed as

��2�c1� = �
−�

�

�log c2�2��2�c1,c2�
� log c2

d log c2 −
��/ln 10�2

3
.

�24�

Although useful from a practical point of view, expres-
sion �24� does not provide a physical interpretation of the
apparent heterogeneity reflected by ��2�c1�. With this aim,
let us recall the definition of p��x� ,c1� to calculate ��2�c1�.
By using Eq. �9�, the computation of the first term in �22�
leads to

�x�2	C = �
−�

�

x�2p��x�;c1�dx�

= �
−�

� �
−�

�

�x2 − log�1 + k1c1��2p�x1,x2�dx1dx2

= �x2
2	 − 2�x2log�1 + k1c1�	 + �log2�1 + k1c1�	 . �25�

Inserting Eqs. �19� and �25� in �22�, the CAS variance
can be expressed as

��2�c1� = �2
2 − 2�corr

2 �c1� + �first component
2 �c1� , �26�

with

�2
2 = �x2

2	 − �x2	2, �27�

�corr
2 �c1� = �x2log�1 + k1c1�	 − �x2	�log�1 + k1c1�	 , �28�
and
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�first component
2 �c1� = �log2�1 + k1c1�	 − �log�1 + k1c1�	2.

�29�

Each one of the three terms appearing in �26� can be re-
garded as coming from a different source of apparent or con-
ditional heterogeneity.

�i� �2
2 is the variance of the affinity spectrum for the

metal in absence of protons, i.e., it is a measure of the
intrinsic heterogeneity of the ligand for the metal ion
and hence it is independent from pH.

�ii� �first component
2 �c1� concerns the variance of the ex-

change work needed to bind metals at a given pH. As
the exchange work requires the release of protons
from the complexing sites, the variance of the ex-
change work will depend on the heterogeneity of the
proton binding energy. As a result, �first component

2 �c1�
increases the variance of the conditional affinity spec-
trum and it can be obtained from data of the system
containing only protons.

�iii� Finally, �corr
2 �c1� is a very interesting term which de-

pends on the correlation between the binding energy
of proton and metal and which tends to decrease the
variance of the conditional affinity spectrum. Correla-
tion is a measure of the linear association between the
affinity of the metal and that of the proton for the
sites. When a large affinity value for the proton does
not imply a large or low affinity value for the metal
there is no correlation, and we say that the two bind-
ing energies are independent, i.e., p�x1 ,x2�
= p1�x1�p2�x2�. In this case, �corr

2 is zero, and ��2�c1� is
the result of adding two independent contributions
coming from the two components, i.e.,

��2�c1� = �2
2 + �first component

2 �c1� . �30�

On the other hand, when the metal and proton binding
energies are fully correlated, i.e., p�x1 ,x2�
= p1�x1���x2−x1−	�, it is easy to show that �corr

2

becomes

�corr
2 = �x1log�1 + k1c1�	 − �x1	�log�1 + k1c1�	 , �31�

which only depends on information concerning the
proton binding. So we conclude that, when the bind-
ing is fully correlated or fully uncorrelated, the appar-
ent heterogeneity only depends, up to an additive con-
stant, on information that can be obtained using only
the proton titration curve. Actually, this means that
Eqs. �26�, �30�, and �31� can be used to experimen-
tally assess whether the competitive binding is corre-
lated and to quantify the correlation of the binding
energies of metal and proton as we will see in more
detail in the next section.

In Fig. 4 we have plotted ��2�c1� in terms of the pH for
bicomponent systems whose binding properties are described
by means of a NICA isotherm with n1=n2=n. The product
np has been kept constant while different values of the pa-
rameter p have been used in the different curves. Besides, we

have plotted two limiting cases: the fully correlated and the
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fully uncorrelated systems. We can see that for noncorrelated
systems, ��2�c1� is an increasing function of the proton con-
centration. In effect, according to �30�, there are only two
independent, and thus additive, sources of heterogeneity, �2

2

and �first component
2 �c1�, the latter being related to the fluctua-

tions of the exchange work. Conversely, in presence of some
correlation, the variance of the conditional spectrum de-
creases. We could say that correlation introduces some addi-
tional ordering in the metal binding, resulting in a lower
heterogeneity, which increases with c1. As a consequence,
increasing the n value, while the product np is kept constant,
��2�c1� progressively tends to the conditional variance cor-
responding to the fully correlated system, in agreement with
the role of parameter p as a common source of heterogeneity
for all the ions.17,22

IV. QUANTIFYING THE BINDING CORRELATION
BY USING THE CONDITIONAL AFFINITY SPECTRUM

A. The covariance matrix corresponding
to an arbitrary multicomponent isotherm

We have shown that the analysis presented for the vari-
ance of the CAS leads to the conclusion that apparent het-
erogeneity and binding correlation are closely related. Let us
provide some insight in this general assertion in the frame-
work of the IE approach. The quantity of interest is the co-
variance of the affinity spectrum, C12, which is defined as the
multiple integral,

C12 = �x1x2	 − �x1	�x2	 , �32�

where

�x1x2	 = �
−�

� �
−�

�

x1x2p�x1,x2�dx1dx2. �33�

It is useful to express the binding correlation in terms of the
correlation coefficient, a dimensionless quantity defined as
R=C12/ ��1�2� , −1
R
1.

According to �32�, the computation of R implies the
computation of the multidimensional affinity spectrum, by
inverting Eq. �2� and further performance of the multiple

integrals appearing in �32�. The main difficulty of this pro-
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cedure is that the affinity spectrum for most of isotherms is
not known. An alternative strategy was provided in Ref. 22.
There, we showed that R can be directly computed from the
expression of the multicomponent isotherm without the
knowledge of the underlying affinity spectrum. The follow-
ing expression for C12 was reported:

C12 = �
−�

� �
−�

�

log c1 log c2
���c1,c2�

� log c1 � log c2

�d log c1d log c2 − �x1	�x2	 −
��/ln 10�2

6
, �34�

with �=�1+�2. Following this way, an analytical expression
for the correlation of the NICA isotherm with n1=n2=n has
been obtained22

R =
2 − p2 − n2p2

2�1 − n2p2�
, �35�

which indicates that NICA isotherm always considers some
degree of positive correlation between proton and metal
binding. Notice that for n=1, we have R=1, which implies
full correlation, in agreement with the analysis performed in
Sec. III.

B. Finding the covariance matrix from the CAS

Nevertheless, the use of Eqs. �32�–�34� to obtain analyti-
cal expressions for the binding correlation is limited by the
fact that, for most multicomponent isotherms, the double in-
tegrals appearing in �34� cannot be performed analytically.
This problem is especially relevant in the cases where the
coverages cannot be explicitly expressed in terms of the con-
centrations, as it happens in most multicomponent isotherms
�Frumkin, Temkin, etc.�. Here we propose a new method
which allows the computing of the binding correlation by
profiting from the properties of the CAS variance.

Taking the limit c1→� in expressions �28� and �29� and

FIG. 4. Variance of the CAS corresponding to a NICA

isotherm as a function of pH. Parameters: k̄1=105, k̄2

=107, np=0.5 and p=0.6 �a�, p=0.7 �b�, p=0.8 �c�, p
=0.9 �d�, p=1 �e�. Curves �f� and �g� correspond to the
fully correlated and fully uncorrelated cases,
respectively.
noting that, in this limit, k1c1�1, we have
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lim
c1→�

�first component
2 = ��x1 + log c1�2	 − �x1 + log c1	2

= �x1
2	 − �x1	2 = C11 = �1

2, �36�

and

lim
c1→�

�corr
2 = �x2�x1 + log c1�	 − �x2	�x1 + log c1	

= �x1x2	 − �x1	�x2	 = C12, �37�

where �1
2 represents the intrinsic heterogeneity for the proton

and C12 is the covariance between the binding energies of
both components.

Thus, in the limit c1→�, the variance of the conditional
affinity spectrum becomes

lim
c1→�

��2 = �1
2 + �2

2 − 2C12. �38�

The covariance C12 can hence be expressed as

C12 =
1

2��1
2 + �2

2 − lim
c1→�

��2� . �39�

Equation �39� is the sought expression for the binding
correlation. All the terms in the right-hand side of �39� can
be directly computed by using just the properties of mono-
component systems: the calculation of the variance of the
affinity spectrum for monocomponent systems implies the
calculation of single integrals, as indicated by Eq. �23�, and
�1

2 �and �2
2� can be directly obtained by taking c2→0 �and

c1→0� in the multicomponent isotherm,

lim
c1→0

��2 = �2
2, lim

c2→0
��2 = �1

2. �40�

Moreover, expressions �38� and �40� indicate that the differ-
ence between the limiting ��2 values at low and high enough
pH values gives limc1→���2−limc1→0��2=�1

2−2C12. Thus,
the computation of �� from experimental metal binding data
in the limit of very low and very high pH range together with
the proton titration curve can provide a way of determining
the correlation.

Let us apply the result �39� to provide analytical expres-
sions for the binding correlation in the case of the multicom-
ponent Frumkin isotherm.

C. Binding correlation in Frumkin isotherm

The Frumkin isotherm was originally derived to take
into account the interaction between the binding agents by
means of the introduction of some interaction parameters �ij.
For a bicomponent system, it reads

b1c1 =
�1

1 − �1 − �2
exp��11�1 + �12�2� , �41�

b2c2 =
�2

1 − �1 − �2
exp��12�1 + �22�2� . �42�

The calculation of the correlation coefficient in a bicom-
ponent Frumkin isotherm will clarify the advantages of the
new approach based on the properties of the CAS and out-

lined in Sec. IV A. First, it is convenient to rewrite �41� as
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1 − �1 − �2 =
�1

b1c1
exp��11�1 + �12�2� . �43�

Clearly, in the limit c1→� the right-hand side of �43�
tends to zero. Hence,

1 − �1 − �2 
 0 ⇒ �1 
 1 − �2. �44�

On the other hand, dividing Eq. �41� by �42� and replac-
ing �43� in the resulting equation we have

b1c1

b2c2
=

1 − �2

�2
exp���11 − �12��1 + ��12 − �22��2� . �45�

Rearranging terms in �45�, the macromolecular coverage
for the metal becomes

�2 = � b2

b1c1
e��11−�12��c2�1 − �2�

�exp�− ��11 + �22 − 2�12��2� , �46�

which can be recognized as a monocomponent Frumkin iso-

therm with affinity parameter b̃= �b2 /b1c1�e��11−�12� and inter-
action parameter �̃=�11+�22−2�12,

�2 = b̃c2�1 − �2�exp�− �̃�2� . �47�

The variance of the spectrum underlying the monocompo-
nent Frumkin was reported in Ref. 30. Applied to �47� it
yields �2= ��̃2 /12+ �̃� / �ln 10�2. Likewise, �1

2 and �2
2 are

given by �i
2= ��ii

2 /12+�ii
2� / �ln 10�2. With these results at

hand, the limit in �38� becomes

lim
c1→�

��2 = � ��11 + �22 − 2�12�2

12

+ ��11 + �22 − 2�12��� �ln 10�2 �48�

and replacing �48� in Eq. �39�, the correlation coefficient
corresponding to the affinity spectrum for the multicompo-
nent Frumkin isotherm is given by

R =
12�12 + 2�12��11 + �22� − �11�22 − 2�12

2

��11
2 + 12�11�1/2��22

2 + 12�22�1/2 . �49�

It is worth noticing from �48� that, since the conditional
variance is a positive quantity, i.e., ��2
0, there is a restric-
tion on the values of the Frumkin parameters for the exis-
tence of the CAS. This condition is

�12 

�11 + �22

2
, �50�

i.e., the interaction energy between different components has
to be smaller than the average of the intrinsic monocompo-
nent interaction energies. Furthermore, since the existence of
the CAS is necessary for the existence of the affinity spec-
trum, �50� can also be seen as a necessary condition for the
existence of a multidimensional affinity spectrum underlying
a Frumkin isotherm.

Figure 5 plots the variance of the CAS corresponding to
a Frumkin isotherm as a function of the pH for different �12
values. Inside the figure, we have depicted the correlation
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coefficient as a function of �12. Notice that the correlation
coefficient increases from R=0 to R=1 as �12 increases from
0 to �12=�11+�22/2. A further increase of �12 yields nega-
tives values of ��2. These values do not have physical mean-
ing �see curve �f� in the figure�, this indicating the nonexist-
ence of the CAS �and, thus, of affinity spectrum� for this set
of parameters ��11=�22=2.0 in the figure�. Notice that there
are three parameters determining the Frumkin isotherm, just
the number of independent elements of the covariance ma-
trix. Thus, there is no restriction on the values of these ele-
ments and all the range of R values can be covered. Figure 5
also shows that all �12 values lead to a common ��2 value at
high pH range. This ��2 value is just �2

2= ��22
2 /12

+�22� / �ln 10�2, the intrinsic variance of the binding energy of
the metal according to �40�. The ��2 value at low pH range is
given by �48� and decreases as the correlation increases in
agreement with �38�.

The procedure outlined in this section can be applied to
any multicomponent isotherm and, among them, to the
NICA isotherm. As expected, expression �35� for the corre-
lation coefficient, previously obtained by performing the
multidimensional integrals involved in Eq. �34�, is
recovered.

V. CONDITIONAL AFFINITY SPECTRA IN SOME
CASES WHERE THE INTEGRAL EQUATION
APPROACH IS NOT SUITABLE: SPECIFIC
AND MULTIDENTATE BINDING

Up to now, we have dealt with systems which can be
described by an underlying multidimensional affinity spec-
trum �IE approach�. We have shown that, if Eq. �2� is ac-
cepted as a good thermodynamic description of the system, a
CAS can always be defined. However, the fulfillment of this
condition is too restrictive for the existence of the CAS, so
that a conditional spectrum could in some cases be defined
even when Eq. �2� does not apply.

Although a general CAS formulation is out of the scope
of the present work, there are at least two kinds of systems of
interest for which the IE approach does not apply. We will

use these cases to generalize now the CAS. Let us first con-
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sider the case of a ligand which has some selective sites for
one of the competing cations, i.e., sites to which only one of
the cations, for instance, the cation i, is able to be bound.
Another case of special interest is the treatment of competi-
tive systems where the competing cations bind with different
stoichiometries to the functional groups of the ligand. Actu-
ally, Eq. �2� requires that both components bind to the sites
in a one-to-one stoichiometry, so that Eq. �2� does not ac-
count for the possible formation of chelates. However, in
metal binding to macromolecules, multidentate complexation
has been widely reported26,31,32 and exchange ratios higher
than 1 have been recorded.23 Let us analyze these two situ-
ations in the framework of the conditional affinity spectrum.

A. A system where not all the ions compete
for all the sites

When some sites are able to selectively bind a metal
cation, while protons cannot be bound to these sites, the
metal coverage can be written as

�2�c1,c2� = qns�
−�

� �
−�

�

pns�x1,x2�
k2c2

1 + �
j=1

2

kjcj

dx1dx2

+ qs�
−�

�

ps�x2�
k2c2

1 + k2c2
dx2, �51�

where qns and qs=1−qns represent the fraction of sites which
have nonselective and selective bindings for the metal ions,
respectively. The first term of the rhs of �51� specifies the
occupation of the nonselective sites. The structure of this
term indicates that the nonselective sites fulfill all the prop-
erties given in Secs. II and III for the CAS underlying a
multidimensional affinity spectrum. Thus the global CAS of
this system consists in the CAS distribution associated to the
nonselective binding sites plus the affinity distribution of the
selective sites. The resulting distribution is depicted in Fig. 6
for different pH values. The parameters of the figure have
been selected so that the distribution is bimodal in order to

FIG. 5. Variance of the CAS underlying the Frumkin
isotherm as a function of pH. Parameters: �11=2, �22

=2 and �12=0 �a�, �12=0.3 �b�, �12=0.5 �c�, �12=1 �d�,
�12=2 �e�, and �12=3 �f�. Inset: correlation coefficient,
R, for the same isotherm with �11=2 , �22=2 as a func-
tion of �12.
evidence the effect of pH. Notice that the distribution asso-
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ciated to the competitive sites �those corresponding to the
metal binding sites able to be protonated� is shifted when
changing the pH value as described in Sec. III, while the
affinity of the sites able to bind only metals is not affected by
a pH change. Finally, we remark that Eq. �51� assumes that
there is no interaction between metals bound to selective and
nonselective sites. If interactions were present, some changes
in the selective binding distribution should be observed as a
response to a pH change. The mean conditional affinity can
then be written as

�x�	C = �x2	 − qns�
−�

log c1

�1��1,0�d log c1, �52�

which differs from the average conditional affinity provided
in Sec. III �see Eq. �21��. This is a consequence from the fact
that Eq. �21� was deduced under the hypothesis of the suit-
ability of the IE approach which now does not apply.

B. A system with multidentate complexation

Let us address the question of multidentate complexation
considering a linear chain able to bind protons and metal
ions either in monodentate or bidentate bonding as depicted
in Fig. 7. This system will be used to exemplify the applica-
tion of the CAS in describing multidentism phenomena. In-
teractions between occupied sites are assumed to be negli-
gible. In a recent paper, Koper et al.33 provided a general
method to deal with chelate complexation of metals to linear

FIG. 7. Linear chain able to bind protons �with stability constant k1� and
metals. The metals can be bound in two different forms: single bond �with

stability constant k2� and bidentate bond �with stability constant k22�.

Downloaded 04 Mar 2013 to 193.144.12.130. Redistribution subject to AIP lic
chains. The method is based on generalizing the classical
transfer-matrix techniques used in Ising-type models. By us-
ing these techniques, the resulting isotherm for the present
binding system is given by

�2�c1,c2� =
1

2�
�k2c2 +

k2c2�1 + k2c2 + k1c1� + 2k22c2

�4k22c2 + �1 + k2c2 + k1c1�2�1/2� ,

�53�

where k1 is the equilibrium constant for the proton, k2 and k22

the equilibrium constants for the metal in the monodentate
and bidentate forms, respectively, and � is the highest eigen-
value of the transference matrix,

� = 1
2 �1 + k1c1 + k2c2 + �4k22c2 + �1 + k2c2 + k1c1�2�1/2� .

�54�

Under a constant proton concentration, Eq. �53� becomes a
monocomponent isotherm which is plotted in Fig. 8�a�. No-
tice that while at low metal concentration the bidentate bind-
ing predominates, at high metal concentration the metal
binding becomes monodentate independently of the values of
the binding parameters k2 and k22.

Applying the inversion formula �12� to Eq. �53�, the
CAS corresponding to a given pH value can be obtained.
However, we will proceed in a different way. Simple algebra
shows that isotherm �53� can be rearranged in the alternative
form,

�2�c1,c2� =
keffc2

2�eff �ueff +
4 − 2ueff + 2�ueff�2keffc2

2�4keffc2 + �1 − ueffkeffc2�2�1/2� ,

�55�

where

�eff = 1
2 �1 + ueffkeffc2 + �4keffc2 + �1 − ueffkeffc2�2�1/2� .

�56�

The parameters keff and ueff, which are functions of c1, are

FIG. 6. CAS of a system with selective �1� and nonse-
lective sites for the metal at different pH values: �a�
pH=12, �b� pH=7, �c� pH=6, �d� pH=5, and �e� pH
=3. The peak �1� corresponds to the selective sites with
weight qs=0.5 described by a Sips distribution and pa-

rameters m=0.5, k̄=1012. The peak �2� corresponds to
the nonselective sites of weight qns=0.5 described by
the CAS underlying the NICA isotherm with k1=105,
k2=105, and n= p=0.5.
defined as
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keff =
k2

1 + k1c1
+

k22

�1 + k1c1�2 , �57�

ueff =
1

1 + k22/�k2�1 + k1c1��
. �58�

For a fixed pH, the isotherm �53� so expressed, is equivalent
to that of a system which merely consists in a linear chain to
which a metal can be bound by only monodentate binding
but showing an effective interaction energy between occu-
pied sites given by �eff=−kT ln ueff. The affinity spectrum of
this system, previously reported in Ref. 29 reads

p��x�;c1� =
ln 10

2�

ueffkeff/k� + 1

��4keff/k�� − ��ueffkeff/k�� + 1�2�1/2 . �59�

Equation �59� indicates that this affinity spectrum is symmet-
ric with respect to log keff+ log ueff, being its existence al-
ways warranted by the fact that ueff
1. Using Eq. �59� for
the cases depicted in Fig. 8�a�, we obtain the CAS spectra
depicted in Fig. 8�b�. One can see that two peaks appear, the
distance between them being dependent on the value of ueff:
the smaller ueff, the wider the spectrum. Since the parameters

eff eff
k and u are pH dependent, Eqs. �57� and �58� explain the
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dependence of the CAS on the pH. Notice in Fig. 8�b� that
the apparent heterogeneity increases as the ratio k22/k2 in-
creases. For a better understanding of this behavior, it is
useful to analyze the situation that appears in absence of
protons. The interaction parameter ueff reduces to

ueff =
1

1 + k22/k2
, �60�

indicating that even in this case �c1=0�, there is some het-
erogeneity that can be explained in terms of entropy changes
in the binding process when multidentate complexation is
present. It is known30 that the decrease of the number of
microstates �and thus the increasing of entropy� when a new
metal is added to the macromolecule is lower in the case of
chelate complexation than in monodentate binding, so that,
when multidentism is present, the equilibrium constants de-
crease faster with metal loading. This is reflected in the spec-
trum through a wider distribution of affinities.

On the other hand, when the proton concentration in-
creases the spectrum shifts towards smaller free energies �as
expected�, and the apparent heterogeneity becomes smaller.
A simple explanation can again be found in Eqs. �57� and

FIG. 8. �a� �2 vs log�c2� curves as given in Eq. �53� and
corresponding to the model depicted in Fig. 7 for dif-
ferent pH values: �a� pH=2, �b� pH=3, �c� pH=4, �d�
pH=5, �e� pH=6, �f� pH=8, and �g� pH=12. Param-
eters: k1=1015, k2=108, and k22=1012. CAS correspond-
ing to the binding curves depicted in �a�.
�58�: the system behaves with an effective equilibrium con-
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stant which is the sum of a term due to bidentate binding
�k22/ �1+k1c1�2� and a term corresponding to monodentate
binding �k2 / �1+k1c1��. Clearly, the first term is much more
affected by a change in the proton activity than the second,
since the binding of a bidentate metal can imply, in principle,
the removing of two protons. In other words, the chelate
contribution, responsible for the heterogeneity of the system,
decreases as the pH decreases. In the limiting case of very
acidic media �c1→��, the system becomes fully monoden-
tate and homogeneous �ueff=1�.

Finally, it is worth to explore the limiting case in which
monodentate binding is absent �k2→0�. Then, the low affin-
ity peak simply disappears from the spectrum. Now it can be
shown that the spectrum normalizes to 1/2 instead of 1, due
to the fact that only half of the sites can be occupied. The
resulting spectrum becomes

p��x�;c1� =
ln 10

2���4keff/k�� − 1�1/2 . �61�

Furthermore, it is easy to show that the average affinity is
given by

�x�	c = �x2	 − 2�
−�

log c1

�1�c1,0�d log c1, �62�

which, as happened in the case discussed in Sec. V A, does
not correspond to the expression reported in Sec. III �Eq.
�21�� as a consequence of the nonsuitability of IE approach
in the case of multidentate complexation.

VI. CONCLUDING REMARKS

The concept of conditional equilibrium constant, a fun-
damental tool in the study of multicomponent binding, has
been extended to describe the competition in systems where
the complexing agents can be bound to the ligand according
to a distribution of affinities. In this case, the extension of the
conditional affinity constant has led to the conditional affin-
ity spectrum �CAS�. The CAS can be understood as an “ef-
fective” or “apparent” affinity spectrum experienced by a
particular component when the concentrations of the rest of
components are kept constant. It has been shown that the
CAS always exists if the competitive binding can be de-
scribed by means of a multicomponent affinity spectrum �IE
approach�. However, CAS can also exist even in some cases
for which the IE approach does not apply.

Since, via the CAS, a multicomponent system is con-
tracted into an equivalent monocomponent one, all the prop-
erties of the monodimensional affinity spectra can be ap-
plied. For instance, for a system with two binding cations
�metal and proton�, one can obtain the conditional affinity
spectrum of the NICA or Frumkin isotherms for the metal
ions by simply applying the Sips inversion formula to the
multicomponent isotherm, keeping constant the proton con-
centration. The CAS obtained will now be a function of the
pH of the system.

As a result, the mean and the variance of the CAS are
functions of the proton concentration. When the IE applies,
the mean of the CAS, which we call “mean conditional af-

finity,” can be expressed in terms of the mean free binding

Downloaded 04 Mar 2013 to 193.144.12.130. Redistribution subject to AIP lic
energy characteristic of the metal ion �corresponding to the
system in absence of protons�, and a term only depending on
the proton titration curve. This fact implies that if one plots
the apparent affinity as a function of the pH, the curves ob-
tained for different metal ions must be parallel, i.e., they
differ just in an additive constant. The verification of this
property could be a first test of validity of the affinity spec-
trum approach for multicomponent systems.

On the other hand, the CAS variance represents a mea-
sure of the “conditional heterogeneity” of the reduced sys-
tem. In contrast with the apparent affinity, the apparent het-
erogeneity can be expressed as a sum of a constant plus a
term coming from the proton titration curve only if there is
no correlation between the binding of the metal and protons.
If the multicomponent system presents binding correlation,
an additional term appears. This dependence of the CAS
variance on the binding correlation provides a procedure to
compute the correlation matrices corresponding to multicom-
ponent affinity spectra. By using this procedure, analytical
expressions for the binding correlation of NICA and Frumkin
isotherms were obtained. In this way, the binding parameters
of such isotherms can be interpreted in terms of the hetero-
geneity properties of the system.

Finally, the possibility of extension of CAS to cases for
which IE approach fails in describing the system is high-
lighted. Two cases are considered: selective binding �some
sites bind only one of the components� and multidentism. In
both cases the CAS are obtained. Proper dependences of the
conditional average affinity on the pH are reported for these
cases highlighting that the properties of these CAS spectra
are different from those in which the IE approach applies.
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