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Abstract

Individuals with Down syndrome (DS) present important motor deficits that derive from altered motor development of
infants and young children. DYRK1A, a candidate gene for DS abnormalities has been implicated in motor function due to its
expression in motor nuclei in the adult brain, and its overexpression in DS mouse models leads to hyperactivity and altered
motor learning. However, its precise role in the adult motor system, or its possible involvement in postnatal locomotor
development has not yet been clarified. During the postnatal period we observed time-specific expression of Dyrk1A in
discrete subsets of brainstem nuclei and spinal cord motor neurons. Interestingly, we describe for the first time the presence
of Dyrk1A in the presynaptic terminal of the neuromuscular junctions and its axonal transport from the facial nucleus,
suggesting a function for Dyrk1A in these structures. Relevant to DS, Dyrk1A overexpression in transgenic mice (TgDyrk1A)
produces motor developmental alterations possibly contributing to DS motor phenotypes and modifies the numbers of
motor cholinergic neurons, suggesting that the kinase may have a role in the development of the brainstem and spinal cord
motor system.
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Introduction

Down syndrome (DS) is the most frequent aneuploidy leading to

mental retardation [1]. Motor dysfunction is highly prevalent

among individuals with DS, who exhibit clumsy sequences of

movements [2], and poor control in programming motor

sequences, their timing and force [3]. Delays in achieving motor

development milestones are also a constant feature in DS children

[4,5]. Babies and young children with DS are late to reach motor

milestones such as grasping, rolling, sitting, standing and walking.

Some of those DS-associated motor deficits have been reproduced

in some mouse models [6,7] and could be contributed by

malfunctioning of the cerebellum [6,8,9].

Some candidate genes have been related to DS phenotypes, but

few of those could be related to motor dysfunction. DYRK1A (dual-

specificity tyrosine- (Y)-phosphorylation-regulated kinase 1A) is

located on HSA21 [10]. It encodes for a serine threonin kinase,

that belongs to an evolutionarily conserved family of proteins

involved in functions generally related with growth and develop-

ment [11].

The role of DYRK1A in pathways controlling motor function is

supported by its expression pattern and the motor phenotype

observed in heterozygous and transgenic Dyrk1A mice

(TgDyrk1A). Dyrk1A is expressed ubiquitously in the developing

nervous system but in adult brain its expression is confined to

neurons of the olfactory bulb, the cerebellar cortex, the spinal cord

and motor nuclei of the brainstem [12,13,14]. However, little is

known of the concrete role of Dyrk1A in motor function or its

expression in the postnatal period. This is relevant to DS-related

motor dysfunction, since DS motor phenotypes derive to some

extent from delays in postnatal motor development. TgDyrk1A

overexpressing Dyrk1A show significant levels of motor dysfunc-

tion in tasks involving coordination, motor learning and organi-

zation of motor behavior [15,16,17] that resemble to some extent

the motor phenotypes present in DS patients. Also, both

TgDyrk1A and a partial trisomy mouse model (Ts65Dn) of DS

present a delay in neuromotor development [15], although this has

not been reproduced in a BAC transgenic mouse strain

overexpressing human DYRK1A [18]. In addition, reduced Dyrk1A

expression in heterozygous Dyrk1A mice leads to a clear

hypoactivity [19,20]. Even though altered motor function in DS

has been mainly ascribed to dysfunction in the cerebellum, other

brain structures, such as the motor nuclei in the brainstem or the

spinal cord or the striatum are also crucial in the generation and

control of motor behavior. Interestingly, intrastriatal injections of

viral vectors expressing shRNA against Dyrk1A into TgDyrk1A

mice rescued their motor defects [17] suggesting that Dyrk1A
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expression in various brain regions may contribute to the DS

motor alterations.

Here we report time-specific expression of Dyrk1A in discrete

subsets of brainstem nuclei and spinal cord motor neurons during

the period of craniocaudal motor maturation. Dyrk1A is

transported to the presynaptic neuromuscular junction as revealed

by experimental axotomy, suggesting a role for the kinase in

neuromuscular junction formation and/or function. Relevant to

DS, Dyrk1A overexpression in transgenic mice (TgDyrk1A)

produces motor developmental alterations possibly contributing

to DS motor phenotypes. Also Dyrk1A overexpression modifies

the numbers of motor cholinergic neurons, suggesting that the

kinase may have a role in the development of the brainstem and

spinal cord motor system.

Materials and Methods

Animals and General Procedures
In order to study the contribution of DYRK1A to Down

syndrome phenotypes, we used a single gene transgenic mouse

model overexpressing Dyrk1A (TgDyrk1A) [15]. The non-trans-

genic littermates of TgDyrk1A mice served as controls. TgDyrk1A

is a single-gene transgenic mouse overexpressing specifically the

full-length cDNA of Dyrk1A under the control of sheep metallo-

thionein-Ia (sMT-Ia) promoter in a C57BL6/SJL genetic back-

ground. The genotyping was performed by PCR analysis using the

primer pair: DYRK-forward primer, 59-GTC CAA ACT CAT

CAA TGT ATC-39 and DYRK-reverse primer, 59-CTT GAG

CAC AGC ACT GTT G-39. Each cycle (32 cycles) consisted of

94uC for 30 s, 52uC for 30 s and 72uC for 45 s. The levels of this

transcript were higher in the transgenic mice, in the range of

,1.5–2.2 fold increased. Same-sex littermates were group housed

under a 12 h light/dark schedule (lights on at 7:00 a.m.) in

controlled environmental conditions of humidity (60%) and

temperature (2261uC) with free access to food and water.

Ethics Statement
All animal procedures were approved by the local ethical

committee (Comité Ético de Experimentación Animal del PRBB

(CEEA-PRBB); procedure numbers MDS-08-1060P1 and JMC-

07-1001P1-MDS), and met the guidelines of the local (law 32/

2007) and European regulations (EU directive nu 86/609, EU

decree 2001-486) and the Standards for Use of Laboratory

Animals nu A5388-01 (NIH). The CRG is authorized to work with

genetically modified organisms (A/ES/05/I-13 and A/ES/05/

14). All efforts were done to minimize animal suffering.

Behavioral Studies
All the pregnant dams were allowed to deliver spontaneously.

The day of delivery was designated as postnatal day 0 (PD0) of age

of the neonates. On delivery, the litter size of each dam was

recorded and each pup was checked for gross abnormalities.

Litters were nursed with their natural dams until weaning at

PD21. The pups (wild type: n = 36; TgDyrk1A: n = 39) mice were

individually marked with ink at PD7. Behavioral studies to assess

neurological and psychomotor development were performed

according to Dierssen et al. [21]. Briefly, neuromotor development

was assessed on PD7, PD10, PD14 and PD21 by pivoting

locomotion test, walking activity, negative geotaxis, climbing

ability and wire suspension test. Each experimental day, before the

behavioral testing pups were weighed and body/tail length

measured, too. Pivoting is an immature locomotion pattern

defined by rotations around the hind limbs. Pivoting locomotion

test was performed on a flat surface with lines drawn to delineate

four 90u segments. The number of pivoting (measured as 90u
turns) in 60 seconds was recorded. The ability to walk in a straight

line is an indicative of a mature neuromotor development. In the

walking test, the latency to walk was measured as the time the

mouse waits until it starts moving in a straight line for a distance

equal or higher than its own length in less than 60 seconds. To

measure negative geotaxis, the mouse is placed on a metallic grid

of 45u slope with its head pointing down. It will turn around and

crawl up the slope. The score was defined as following: (0) no

response, (1) the animal turns around but it doesn’t climb, and (2)

the animal turns 180u and climb up. The climbing ability was

measured when the pup is held against a vertical metallic grid

(wire: 0.6 mm in diameter, mesh: 6 mm wide). One behavior is

scored as (0) if there is not response and (1) if the animal shows the

ability to climb. In the wire suspension test, pups were placed on a

wire (4 mm diameter) in an upside-down position. The ability of

the animal to remain suspended was measured as the latency to

fall. The maximum time allowed was 60 seconds. All the

behavioral testing was conducted by the same experimenter in

an isolated room and at the same time of the day. Behavioral

experimenters were blinded to the genetic status of the animals.

Tissue Preparation and Immunohistochemical
Procedures

Mice (PD7, PD10, PD14, PD21 and adults; minimum n = 5 per

group) were deeply anesthetized with CO2 and transcardially

perfused with physiological saline solution followed by 4%

paraformaldehyde (Sigma, St Louis, MO, USA) in 0.1 M

phosphate buffer (PB; pH 7.4). Brain, spinal cord and muscle

(caudal portion of digastricus and stylohyoideus muscle) were

removed and immersed overnight in fresh fixative at 4uC.

Processing of the tissue was different depending on the experi-

ment. Part was transferred to 30% sucrose in 0.1 M PB for 24

hours and frozen, while the rest was embedded in paraffin after

dehydration with increasing concentrations of ethanol until

arriving to xylene. Frozen spinal cord and brain were sliced in

coronal sections (16 mm) whereas muscles were cut into longitu-

dinal sections with the aid of a cryostat.

Tissue sections were processed using streptavidin-biotin-perox-

idase complex immunohistochemical method or by immunofluo-

rescence. In both cases, sections were incubated with 10% fetal

bovine serum (FBS) and then incubated with the primary antibody

overnight at 4uC. Primary antibodies against Dyrk1A (diluted

1:500, [12] and 1:200 AbNova Corporation, Tebu, France),

serotonin (diluted 1:35000, DiaSorin, Stillwater, MN, USA),

tyrosine hydroxilase (TH, diluted 1:8000, Sigma, St Louis, MO,

USA), choline acetyltransferase (ChAT, diluted 1:400, Chemicon,

Temeluca, CA, USA), Calbindin D-28K (diluted 1:200, Sigma, St

Louis, MO, USA), Calretinin (diluted 1:500, Sigma, St Louis,

MO, USA), Parvalbumin (diluted 1:500, Sigma, St Louis, MO,

USA), vesicular glutamate transporter 1 (vGlut1, diluted 1:2500,

Chemicon, Temeluca, CA, USA), vesicular glutamate transporter

2 (vGlut2, diluted 1:1000, Synaptic Systems, Göttingen, Ger-

many), glutamate decarboxylase (GAD65–67, diluted 1:500,

Chemicon, Temeluca, CA, USA) and calcitonin gene related

peptide (CGRP, diluted 1:1000, Sigma, St Louis, MO, USA) were

used. The sections were then incubated with the appropriate

biotinylated secondary antibody or with secondary antibodies

labeled either with Alexa Fluor 488 or Alexa Fluor 546 (Molecular

Probes, Eugene, OR, USA) for multifluorescent labeling. In the

first case, the sections were then incubated with the biotinylated

link and the streptavidin-HRP as indicated in the manufacturer’s

instructions (DAKO, LSAB system, Ely, UK). Peroxidase activity

was visualized with 0.05% diaminobenzidine and 0.01% hydrogen

Role of Dyrk1A in Neuromotor Development
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peroxide. Sections were dehydrated with increasing concentrations

of ethanol until arriving to xylene, and cover slipped with DPX

(distyrene, tricresyl phosphate, and xylene; BDH Laboratory

Supplies, UK). For immunofluorescence, labeled sections were

mounted using Vectashield Mounting medium with DAPI (Vector

Laboratories, Burlingame, CA, USA) and stored at 4uC.

Skeletal muscle sections (caudal portion of digastricus and

stylohyoideus muscle) that are innervated by facial nerve (VII)

were directly incubated with Alexa Fluor 488-conjugated a-

bungarotoxin (a-Btx, 1 mg/ml; Molecular Probes, Eugene, OR,

USA) to detect the acetylcholine receptors (AchRs) at the

neuromuscular synaptic sites and synaptophysin (diluted 1:100;

DakoCytomation Glostrup, Denmark) as a pre-synaptic marker.

The sections were examined using a Leica DMR (Leica

Microsystems AG, Wetzlar, Germany) microscope with a Leica

DC500 digital camera coupled to the microscope. Immunofluo-

rescence sections were captured on a Leica TCS SPE with

appropriate lasers. Intensity analysis was performed on images

acquired under identical microscope conditions and software

settings. For the final published figures, images were assembled,

labeled and balanced for optimal brightness and contrast by using

either Adobe Photoshop or ImageJ software (National Institutes of

Health, Bethesda, MD, USA).

Morphology and Stereological Techniques
To construct the morphological maps we used coronal slices

(16 mm). Counterstained with the Nissl technique using 0.1%

cresyl violet and other markers (Dyrk1A, ChAT) to characterize

specific neuronal populations at PD7, PD10 and PD21. Images of

the regions of interest were taken, sections were reconstructed and

neuronal maps were drawn. Counts of facial motoneurons were

performed on serial Nissl stained paraffin sections (9 mm). Adult

mice motoneurons of the facial nucleus are localized in a well-

defined region of the brainstem that allows counting their cell

bodies. Briefly, a minimum of wild type and TgDyrk1A adult (6

months old) mice (n = 6 per genotype), were transcardially

perfused as described above. Sections were stained using the Nissl

technique with 0.1% cresyl violet, dehydrated with increasing

concentrations of ethanol to xylene, and coverslipped with DPX.

Large motoneurons, with clearly defined nucleolus, were counted

from every fourth section with the aid of a camera lucida. The

area of each motoneuron was also measured.

Axotomy of the Facial Nerve
Adult (6 months old) mice were anesthetized with 3% isoflurane.

Using aseptic techniques, the right facial nerve of each animal was

exposed and transected at its exit from the stylomastoid foramen

[22]. Successful transections were identified by an absence of

whisker movement at the left side of the face. The contra lateral

side was used as a control. At 2, 7 and 14 days after axotomy, the

animals (n = 4 for each time point and genotype) were deeply

anesthetized and perfused transcardially as it was described above.

The lower brainstem segment was quickly removed and post-fixed

in the same fixative. Serial 40 mm thick sections of the brainstem

were processed for Dyrk1A immunohistochemistry and for

Dyrk1A/CGRP fluorescent labeling, in order to quantify Dyrk1A

intensity in the motoneurons of the facial nucleus.

Data Analysis
Simple comparisons between TgDyrk1A and wild type mice in

behavioral tasks and morphological/stereological studies were

performed using the two-tailed Student’s t test or repeated

measures ANOVA. Quantitative data are expressed as mean 6

standard error (S.E.M.). In all tests, a difference was considered

significant at p values ,0.05. The statistical analysis was

performed using the SPSS 17.0 software.

Results

Neurobehavioral Development
In order to study the contribution of DYRK1A to Down

syndrome phenotypes, we used a transgenic mouse model for

Dyrk1A (TgDyrk1A) [15]. TgDyrk1A is a single-gene transgenic

mouse overexpressing specifically the full-length cDNA of Dyrk1A

under the control of sheep metallothionein-Ia (sMT-Ia) promoter.

The levels of this transcript were higher in the transgenic mice, in

the range of ,1.5 to 2.2 fold increased.

No significant differences were detected in weight and body

length increase during the preweaning period in wild type (n = 36)

versus TgDyrk1A (n = 39) mice (data not shown). TgDyrk1A mice

showed no significant differences in the achievements of physical

milestones, such as fur appearance, incisor eruption, eyelid

opening or permeabilisation of the auditory canal. Also, no

differences were detected in sensoriomotor functions, such as

forelimb/hind limb placing and grasping, tactile orientation or

Preyer’s reflex. These data indicate that Dyrk1A overexpression did

not affect the overall growth or the acquisition of sensoriomotor

functions in mice.

Neuromotor Development
Previous data from our lab showed neuromotor developmental

delay in TgDyrk1A mice [15]. Thus to get further insight in the

effect of Dyrk1A overexpression on early postnatal motor

development, TgDyrk1A mice were evaluated at four time points

important for motor development: PD7, PD10, PD14 and PD21.

TgDyrk1A (n = 32) mice showed a similar pivoting activity

compared to wild types (n = 32) (Figure 1A). However, we

observed a significant delay in the appearance of walking behavior

(F(7,56) = 10.290, P = 0.000, repeated measures ANOVA)

(Figure 1B) supporting previous reports. This delay was more

apparent at older ages, when the adult walking patterns are fully

established. TgDyrk1A also showed a delay in the acquisition of

negative geotaxis. At PD7, 21.4% of wild type presented a

complete negative geotaxis, compared to only 16.6% of

TgDyrk1A mice. However, this impairment was rapidly recov-

ered, so that at PD10, TgDyrk1A mice performed the task even

better than the wild type mice (F(5,42) = 11.016, P = 0.000, repeated

measures ANOVA, Figure 1C). TgDyrk1A mice were also slower

in acquiring climbing ability (Figure 1D). At PD7, 28% of wild

type while no TgDyrk1A was able to climb the screen

(F(5,72) = 32.266, P = 0.000, repeated measures ANOVA), albeit

again at PD14 both genotypes correctly performed the task. In the

wire suspension test (Figure 1E), TgDyrk1A remained less time

hanging in the wire and they fell down earlier than wild type mice

(F(7,56) = 6.875, P = 0.000, repeated measures ANOVA). Finally,

no significant alterations in the locomotion pattern between wild

type and TgDyrk1A mice were observed in the paw print test at

PD21 (data not shown).

Expression Pattern of Dyrk1A during Early Postnatal
Development

We next studied the pattern of expression of Dyrk1A in wild

type and TgDyrk1A mice during postnatal development (mini-

mum of 6 mice per genotype, age and experiment). Dyrk1A

expression is well characterized during embryonic stages [14,23]

and in the adult mice [12], but there were no data on the postnatal

period. While during development Dyrk1A is ubiquitously

expressed, in the adult it is specifically expressed in motoneurons

Role of Dyrk1A in Neuromotor Development
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of the motor nuclei of the brainstem (i.e. Facial nucleus). Since the

motor alterations in DS are established through delays in postnatal

motor development, we analyzed the expression of Dyrk1A in the

brainstem and spinal cord (SC) at different postnatal days (PD7,

PD10, PD14). No differences in the expression pattern of Dyrk1A

were detected between genotypes, showing no ectopic expression,

but increased Dyrk1A signal intensity in TgDyrk1A mice

indicating overexpression of the kinase.

Dyrk1A expression at postnatal day 7. At PD7, immuno-

histochemistry against choline acetylcholine transferase (ChAT)

showed cholinergic neurons mostly in the facial (FN) and

trigeminal motor nuclei (Figure 2A,B), although scattered ChAT

positive neurons also appeared in other brainstem areas. At this

stage, Dyrk1A was not expressed in motoneurons (MTNs) of the

FN (Figure 2A, upper panel), but we detected a positive Dyrk1A

population in specific nuclei of the reticular formation located

around the FN (Figure 2A, lower panel, D): dorsal nucleus

paragigantocellular (DPGi), gigantocellular reticular nucleus (Gi),

intermediate reticular nucleus (IRT), parvicellular reticular nucle-

us-alpha part (PCRtA), paragigantocellular lateral nucleus (LPGi)

and in the raphe nuclei (nucleus magnum –RMG- and pale

nucleus –RPA). Also, Dyrk1A expression was found in the medial

longitudinal fascicle (MLF) and nucleus peripyramidal (ppy)

(Figure 2C). In the reticular formation, Dyrk1A was not co-

localized with calcium binding proteins, serotonin or tyrosine

hydroxylase, but we detected co-immunostaining with GABA,

GAD65–67, vGlut1 and vGlut2 (Figure 2D), suggesting that

Dyrk1A is expressed in glutamatergic and GABAergic neurons

in both genotypes.

Dyrk1A expression at postnatal days 10 and 14. At PD10,

Dyrk1A started to be detected in motoneurons (MTNs) of the

spinal cord (SC; cervical, dorsal, lumbar; Figure 3A) and FN

(Figure 3B), where it remained until adulthood in both genotypes.

Double immunofluorescence studies showed co-localization of

Dyrk1A positive MTNs with ChAT, confirming their cholinergic

phenotype (Figure 3C, left panel), and their localization in the

ventral horn of the SC (Figure 3C, right panel).

From PD10 to PD14, Dyrk1A expression disappeared from

neurons of the reticular formation and was detected in the MTNs

of the FN (Figure 3B) and other motor nuclei of the brainstem,

such as the trigeminal nucleus that were positive for Dyrk1A and

ChAT (Figure 3D). However, only 70% of the ChAT positive

neurons of the FN at PD14 expressed Dyrk1A in both genotypes,

although TgDyrk1A showed increased intensity of immunoreac-

tivity against Dyrk1A.

Motoneurons of the SC and the FN showed a strong

cytoplasmic granular Dyrk1A immunostaining in the soma and

proximal neurites at PD10 and PD14, completely excluding the

nucleus, similar to that previously described during adulthood

[12]. Although no important genotype-related differences were

observed in Dyrk1A expression pattern during postnatal develop-

ment, adult TgDyrk1A mice showed a 15.5% of significant

increase of total number of MTNs (t = 24.145, P = 0.003,

Student’s t test, Figure 4A,B) in the FN. In addition, MTNs of

TgDyrk1A mice had smaller diameters (t = 4.461, P = 0.000,

Student’s t test, Figure 4A,C).

Dyrk1A Expression at the Neuromuscular Junctions
Previous work had described the location of Dyrk1A in neurite

terminals, and suggested its involvement in neurotransmission at

the synaptic site [24,25]. Thus, we studied Dyrk1A expression at

the neuromuscular junctions in adult mice (6 months). Fluorescent

a-bungarotoxin (aBtx) conjugate was used to identify postsynaptic

ACh receptors, to localize neuromuscular junctions and innervat-

ed motor endplates (Figure 5A). Intensity values for Dyrk1A and

aBtx fluorescence were plotted for individual endplates on

TgDyrk1A mice (Figure 5B). Dyrk1A was not detected with a

pre-absorbed anti-Dyrk1A antibody, as a negative control

(Figure 5C). To confirm the observation of presynaptic location

of Dyrk1A in neuromuscular junctions, a double immunostaining

of Dyrk1A and synaptophysin was performed. A clear colocaliza-

Figure 1. Neuromotor development of TgDyrk1A mice. A) Pivoting activity: TgDyrk1A mice showed a similar number of turns (times the
mouse rotated 90 degrees on its hindlimbs) over a 60 sec period in the pivoting test. B) Walking activity: TgDyrk1A mice showed longer latency to
initiate walking at PD14 and PD21. C) Negative geotaxis: TgDyrk1A mice exhibited a delay in acquiring negative geotaxis as shown by the impaired
performance at PD7 that was recovered at later stages (PD14). D) The percentage of TgDyrk1A mice able to perform the vertical climbing was
reduced at PD7 and PD10. E) In the wire suspension test, the latency to fall of TgDyrk1A mice was reduced at P7 developmental stages. Data are
presented as mean+SEM, * P,0.05, ** P,0.005.
doi:10.1371/journal.pone.0054285.g001
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tion was observed, indicating Dyrk1A immunostaining associated

with presynaptic terminals but not with the post-synaptic marker

(aBtx, Figure 5D).

In order to analyze the possible axonal transport of Dyrk1A

protein, we performed unilateral facial nerve axotomies in adult

mice. The animals were then sacrificed at different time points

after surgery (days 2, 7, 14) to determine Dyrk1A accumulation in

the FN (Figure 6A). A group of non-axotomized wild type and

TgDyrk1A animals were used to determine the basal levels of

Dyrk1A expression in the FN. In the non-axotomized group, the

expression level of Dyrk1A was higher in TgDyrk1A mice as

compared with wild types (t = 22.937, P = 0.043, Student’s t test).

For the axotomized groups, the ratio between axotomized and

contralateral sides was calculated in each time point after axotomy

and ratios were normalized to the basal Dyrk1A expression levels

of each genotype.

The ratio of Dyrk1A expression between axotomized and

contralateral sides increased 7 days after axotomy and was

decreased by day 14 postaxotomy in both genotypes (Figure 6A,B).

These results suggested that Dyrk1A is transported along the axons

to the neuromuscular junctions since after axotomy Dyrk1A was

accumulated in the soma of the FN MTNs. To verify this Dyrk1A

accumulation, we analyzed the expression of calcitonin gene

related peptide (CGRP), a neuropeptide located in granular

vesicles of the Golgi apparatus and smooth endoplasmic reticulum

of MTNs [26], at 14 days after surgery. CGRP accumulates in the

soma of MTNs 15 hours after axotomy of the FN, reaching a peak

at 6 days after surgery, and gradually decreasing to normal levels

[27]. In our experiments, Dyrk1A co-localized with CGRP and

both genotypes showed a concomitant increase in CGRP

expression (Figure 6C).

Discussion

Down syndrome (DS) individuals present important motor

deficits that have been classically ascribed to structural and

functional deficits in the cerebellum [28]. Genetic dissection

studies in mouse models showed the implication of Dyrk1A, a

candidate gene for DS abnormalities, in the adult DS motor

phenotypes [12,16,17,20,29,30,31,32]. However, even though DS

motor deficits are the consequence of altered motor development

of infants and young children, there are very few studies

addressing its pathogenetic mechanisms in this extremely impor-

tant life period. Here we have explored the postnatal expression

pattern of Dyrk1A in the brainstem and spinal cord and impact of

its overexpression during postnatal motor development in

transgenic mice (TgDyrk1A). Our results confirmed and extended

Figure 2. Dyrk1A expression in the brainstem at postnatal day 7. A, D) Collapsed low magnification images of confocal z-stacks of coronal
sections (16 mm) of the brainstem from PD7 wild type (left panel) and TgDyrk1A (right panel) mice. A) Double immunofluorescence labeling for
Dyrk1A (green) and ChAT (red) and counterstaining with DAPI (blue) showing no positive Dyrk1A cells in MTN of the facial nucleus. Note the typical
morphology of ChAT positive MTNs (upper panel). Dyrk1A positive neurons in specific nuclei of the reticular formation located around the facial
nucleus (lower panel). B, C) Histological maps showing: B) ChAT positive-Dyrk1A negative neurons mostly localized in the facial motor (VII) and
trigeminal motor (V) nuclei and C) Dyrk1A positive neurons in several nuclei of the reticular formation: dorsal nucleus paragigantocellularis (DPGi),
gigantocellularis reticular nucleus (Gi), intermediate reticular nucleus (IRT), parvicellular reticular nucleus-alpha part (PCRtA), paragigantocellularis
lateral nucleus (LPGi) and in the raphe nuclei (nucleus magnum –RMG- and pale nucleus –RPA). D) Double immunostaining of Dyrk1A (green) and
glutamate decarboxylase (GAD65–67), vesicular glutamate transporter 1 (vGlut1) and vesicular glutamate transporter 2 (vGlut2). Upper panel show
wild type and lower panel TgDyrk1A mice. Inserts represent higher magnification images of selected positive neurons. Scale bar (valid for all panels):
10 mm.
doi:10.1371/journal.pone.0054285.g002
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previous studies [15] indicating a delayed cranio-caudal matura-

tion of the motor system. Dyrk1A showed a time-dependent

postnatal expression in specific brainstem nuclei of the reticular

formation, and later expression in motoneurons (MTNs) of the

facial motor nucleus (FN) and the spinal cord. Importantly, we

describe for the first time the presence of Dyrk1A in the

presynaptic terminal of the neuromuscular junctions and its

axonal transport from the facial nucleus, suggesting a function for

Dyrk1A in these structures.

In our experiments, we have confirmed and extended previous

observations indicating that Dyrk1A overexpression in TgDyrk1A

mice gives rise to neuromotor developmental delay [15].

TgDyrk1A mice showed a delayed development of adult-like

walking ability (PD10 and PD14) that was compensated by PD21.

The maturation of negative geotaxis required to detecting and to

correct body position, was also slightly, though not significantly

delayed in TgDyrk1A, suggesting that Dyrk1A overexpression

could affect propioception and vestibular development. This

assumption was reinforced by the significantly slower acquisition

of the climbing ability.

In the neonate, immature motor patterns mainly depend on

spinal and brainstem control and it is subsequent motor

maturation what stems from a growing integration of supraspi-

nal, intraspinal, and sensory control. Previous studies showed

ubiquitous spatio-temporal expression of Dyrk1A in the mid/

late embryonic (E12–18), the early postnatal (PD0–5) [13,14]

that was restricted to the olfactory bulb, some forebrain regions

and MTNs of the brainstem (facial nucleus) and spinal cord in

the adult mouse brain [12]. In our experiments, a positive

Dyrk1A population was detected in specific nuclei of the

reticular formation, such as the dorsal nucleus paragigantocel-

lular, gigantocellular reticular nucleus, intermediate reticular

nucleus, parvicellular reticular nucleus-alpha part, paragiganto-

cellular lateral nucleus and raphe nuclei, that disappeared from

the reticular formation at PD10. Dyrk1A transcripts were

previously reported in the basal plate of the rhombencephalon

during embryonic period, in several pontine nuclei and in the

rhombencephalic reticular formation, as well as in the cochlear

and vestibular nuclei of the alar plate [13,14]. Our study

suggests that its expression persists during early postnatal stages,

both in glutamatergic and GABAergic neurons as shown by its

co-localization with GABA, GAD65–67, vGlut1 and vGlut2.

At PD10, a period that is crucial for the development of motor

patterns such as walking ability, Dyrk1A expression started in

Figure 3. Dyrk1A expression in the spinal cord and facial nucleus at postnatal day 10, postnatal day 14 and adulthood. A) At PD10,
Dyrk1A expression started to be detected in MTNs of the spinal cord (left panel), where it remained until adulthood (PD14: middle panel; adult: right
panel), in both wild type (upper panel) and TgDyrk1A mice (lower panel). Insert shows MTNs (*) at higher magnification. B) At PD14 (upper panel),
Dyrk1A expression disappeared from neurons of the reticular formation and started in the MTNs of the facial nucleus, where it remained until
adulthood (lower panel) in wild type (left panel) and TgDyrk1A (right panel). Insert shows Dyrk1A positive MTNs (*) at higher magnification. C) Double
immunofluorescence studies at PD10 showed the co-localization of Dyrk1A (green) positive MTNs with ChAT (red) staining in wild type (upper panel)
and TgDyrk1A (lower panel) mice that confirmed their cholinergic phenotype. Note the strong Dyrk1A cytoplasmic granular immunostaining in the
MTN soma and proximal neurites. Right panel depicts the morphological maps locating Dyrk1A positive neurons in the ventral horn of the spinal
cord. D) Mapping of Dyrk1A positive cells showing its location in the MTNs of the FN and other motor nuclei of the brainstem. Abbreviations: DPGi,
dorsal nucleus paragigantocellularis; Gi, gigantocellularis reticular nucleus; IRT intermediate reticular nucleus; PCRtA, parvicellular reticular nucleus-
alpha part; LPGi, paragigantocellularis lateral nucleus; and raphe nuclei (RMG, nucleus magnum, and RPA, pale nucleus), facial motor (VII) and
trigeminal motor (V) nuclei. Scale bar for A and C: 10 mm, Scale bar B: 15 mm.
doi:10.1371/journal.pone.0054285.g003

Role of Dyrk1A in Neuromotor Development

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e54285



MTNs of the facial nucleus and spinal cord (cervical, dorsal,

lumbar), where it persisted until adulthood and was co-localized

with ChAT. Dyrk1A showed a strong cytoplasmic granular

immunostaining in the soma and proximal neurites at PD10 and

PD14, completely excluding the nucleus, similar to the subcellular

pattern previously described [12].

Interestingly, the number of FN MTNs was significantly

increased in TgDyrk1A mice although they were smaller than in

wild type mice. Dyrk1A has been suggested to control cell

proliferation and exit from the cell cycle at precise locations along

the neural tube [23]. In a YAC transgenic mouse line (152F7)

overexpressing DYRK1A, increased brain weight and neuronal size

were detected, along with increase in phosphorylation of the

transcription factor FKHR and with high levels of cyclin B1 [33].

Our results suggest that Dyrk1A may also affect proliferation of

other neuronal populations. However, MTNs’ size was decreased

in TgDyrk1A that could be interpreted as receiving less terminals

contacts [34].

Motor dysfunction in DS is accompanied by hyporeflexia and

reduced muscular strength and tone [4,35,36]. Thus, we also

studied if Dyrk1A was expressed in at the neuromuscular

junctions. We found Dyrk1A in neuromuscular synapses, but it

did not co-localized with a-bungarotoxin (aBtx) a post-synaptic

marker of acetylcholine receptors (AChRs), indicating that

Dyrk1A is located in presynaptic terminals. These results

suggested that Dyrk1A could be transported along the axons

to the neuromuscular junctions. To proof this hypothesis, we

performed facial nerve axotomies, and analyzed expression of

Dyrk1A in the FN MTNs. Should Dyrk1A undergo axonal

transport, its increased accumulation in the soma would be an

indicator of the disruption of transport. In our experiments, the

ratio of expression of Dyrk1A between axotomized and

contralateral sides was increased 7 days after axotomy in both

genotypes, and thereafter reduced at post-axotomy day 14. The

expression levels of CGRP, a neuropeptide that accumulates in

the soma of motoneurons after axotomy of the facial nerve [27],

were also increased after surgery in both wild type and

transgenic mice. Interestingly, we observed a co-localization of

Dyrk1A with CGRP in granular cytoplasmic vesicles of the

MTNs, where it coexists with ChAT, and in the Golgi

apparatus and smooth endoplasmic reticulum [26].

In conclusion, we here demonstrate time-specific postnatal

Dyrk1A expression in the brainstem, spinal cord and in the

neuromuscular junctions where it arrives through anterograde

axonal transport. Dyrk1A overexpression in TgDyrk1A mice leads

delays in motor maturation and increased numbers of small-size

MTNs. Interestingly, Dyrk1A was found in the brainstem motor

nuclei, which integrity is required for the timely development of

motor function. Taken together our work indicates that the role of

Dyrk1A in motor function may be more complex than previously

envisaged and suggest that normalization of its dosage could be a

good therapeutic strategy in DS.

Figure 4. Quantification of the number of motoneurons in the facial nucleus of adult TgDyrk1A. Counting of facial motoneurons was
performed on serial Nissl stained paraffin sections (9 mm). A) The number of MTNs in the facial nucleus was quantified in adult wild type (left panel)
and TgDyrk1A (right panel) mice. Lower panels show high magnification of the corresponding slice. B) TgDyrk1A mice showed a significant increase
of total number of MTNs of the facial nucleus. C) TgDyrk1A MTNs presented a reduction of their diameter. Data in the histograms are represented as
means +/2 SEM. ** P,0.005, *** P,0.001. Scale bar (for upper panels): 15 mm, (for lower panels): 1 mm.
doi:10.1371/journal.pone.0054285.g004
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Figure 5. Dyrk1A expression at the neuromuscular junctions. A) Dyrk1A (red) was found in neuromuscular synapses, where it was not co-
localized with a-bungarotoxin (aBtx; green) in wild type (upper panel) and TgDyrk1A (middle panel) mice, indicating that Dyrk1A is located in the
presynaptic region. Lower panel depicts pre-absorption experiments against mouse anti-Dyrk1A antibody. B-C) Intensity values (arbitrary pixel
intensity units) for Dyrk1A (red) and aBtx (green), a marker of acetylcholine receptors, fluorescence were plotted along a line traced over a synaptic
fold in individual endplates on (B) TgDyrk1A mice and (C) pre-absorbed antibody. D) Dyrk1A (red, upper left panel) was present at the pre-synaptic
site of the neuromuscular junctions, showed by triple fluorescence immunohistochemistry. Synaptophysin (blue, upper central panel) was used as a
pre-synaptic marker. a-bungarotoxin (aBtx; green, upper right panel) was used as a post-synpatic marker. Merge images for Dyrk1A and
synaptophysin (lower left panel) showed a clear co-localization between both markers. Lower right panel showed only aBtx expression and there was
not a co-localization with Dyrk1A. Scale bar: A) 10 mm and D) 25 mm.
doi:10.1371/journal.pone.0054285.g005

Role of Dyrk1A in Neuromotor Development

PLOS ONE | www.plosone.org 8 January 2013 | Volume 8 | Issue 1 | e54285



Acknowledgments

We like to thank Imma Montoliu for her technical help and Prof. Josep
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