
Universitat de Lleida
Escola Politècnica Superior

Màster en Ciències Aplicades a l’Enginyeria

Master Thesis

Kumar’s algorithm for solving
Toeplitz systems of equations over

finite fields

Author:
Núria Busom i Figueres

Advisers:
Josep Ma Miret Biosca
Francesc Sebé Feixas

July 2011

ii

Contents

Contents iii

Preface 1

1 Introduction 3
1.1 State of the art . 3
1.2 Applications involving Toeplitz systems 4
1.3 Purpose . 4

2 Number Theoretic Transform 7
2.1 Radix-2 DIT Cooley-Tukey’s Algorithm 10
2.2 General Cooley-Tukey’s Algorithm 13
2.3 Rader’s algorithm . 15
2.4 Shoup’s circular convolution 17

3 Kumar’s algorithm 21
3.1 First step of Kumar’s algorithm 22
3.2 Second step of Kumar’s algorithm 23
3.3 Third step of Kumar’s algorithm 23

4 Adapting Kumar’s algorithm 25
4.1 Working over field extensions 29

5 Outcomes and Future work 31
5.1 Outcomes . 31
5.2 Further improvements . 33

A Polynomial multiplication and convolutions 35
A.1 Polynomial multiplication and linear convolution 35
A.2 Linear and circular convolution 37

Bibliography 39

iii

iv CONTENTS

Preface

In [Kum85], Kumar presented and algorithm that solves a Toeplitz system
of n linear equations with n unknowns defined over the real field in time
O(n log2 n). In this work, we have studied how to use Kumar’s algorithm
when the system of equations is defined over a finite field. This task is not
straightforward due to some difficulties that arise from the computation of
Fast Fourier Transforms over finite fields.

During our work, the following tasks have been performed:

(i) Study Kumar’s algorithm.

(ii) Learn the basis of finite fields theory.

(iii) Study the Discrete Fourier Transform over real numbers and its equiv-
alent over finite fields, i.e., the Number Theoretic Transform (NTT).

(iv) Study how the NTT can be computed in quasi-linear time.

(v) Analyse how to adapt Kumar’s algorithm so as to work over finite fields.

1

2 CONTENTS

Chapter 1

Introduction

In this chapter, the concept of Toeplitz matrix is defined and some methods
to solve equation systems with such a coefficients matrix are referenced. This
kind of linear equation systems appear in many different areas, as we will
show in section 1.2.

1.1 State of the art

Solving an n × n linear system of equations employing the Gauss algo-
rithm has a complexity O(n3). Fortunately, when the coefficients matrix is a
Toeplitz matrix, there exist faster algorithms.

A Toeplitz matrix T of order n, whose elements belong to a given field
K, is a squared matrix in which each descending diagonal from left to right
is constant. That is:

T =


t0 t−1 t−2 . . . t−n+1

t1 t0 t−1 . . . t−n+2

t2 t1 t0 . . . t−n+3
...

...
...

. . .
...

tn−1 tn−2 tn−3 . . . t0

 .

The solution of a linear system of equations entailing a Toeplitz matrix
can be found in quadratic time using iterative methods, like Levinson’s al-
gorithm [Lev47], or computing the inverse of the matrix.

Levinson recursion is a procedure to recursively calculate the solution to
a Toeplitz system which runs in O(n2). It was first proposed by Norman
Levinson in 1947 and it was later improved by Durbin [Dur60] in 1960 and
subsequently by Trench [Tre64] and Zohar [Zoh74].

3

4 Introduction

Faster algorithms running in quasi-linear time do exist. Rajendra Ku-
mar [Kum85] proposed an algorithm for solving systems of linear equations
involving a Toeplitz matrix over the real field, which has a running time
O(n log2 n). This algorithm is a fast implementation of Trench’s algorithm
[Tre64].

1.2 Applications involving Toeplitz systems

Toeplitz systems appear in many areas, some of them are exposed below:

• In cryptography, a good elliptic curve has prime (or semi-prime) car-
dinality (number of points) [BMSS06]. A semi-prime number is a big
prime number multiplied by a small cofactor. Once a good elliptic curve
is known, by means of isogeny computations, we can obtain other curves
with the same cardinality. Some fast methods for isogeny computation
involve Toeplitz matrices.

• In signal processing, discrete convolutions are widely used, for in-
stance in digital filters [FS74], [SA96]. Convolutions can be considered
a Toeplitz Matrix operation where each row is a shifted copy of the
convolution kernel.

• In digital image processing, a restoration images process is performed
using Toeplitz systems [Kim08]. Such processing has many applications,
such as in satellite, military reconnaissance missions, medical, forensic
science and astronomical imaging. It is also applicable in the restoration
of poor-quality family portraits.

1.3 Purpose

The purpose of this Master Thesis is to study Kumar’s algorithm and see
how it can be used to work over finite fields. The resulting adaptation has
been implemented in Sage [Sage].

Sage is a free open-source mathematics software system licensed under the
GPL. It is a compilation of original Python, C, C++, and Cython code, and
existing free mathematics-related software (Magma, Maple, Mathematica,
Matlab, Maxima,...).

This document is divided into five chapters, a preface and an appendix.
In the preface, the work carried out during the development of this project is
enumerated. In the first chapter, the definition of a Toeplitz matrix is given,

1.3 Purpose 5

as well as some references to fast methods to solve Toeplitz systems of equa-
tions and some real applications. The second chapter, is a background on the
Discrete Fourier and Number Theoretic Transforms and some fast algorithms
to solve them. In the third one, Kumar’s algorithm is summarized and in the
fourth one, our modifications and contributions to it are detailed. In the last
chapter, some numerical results are shown and possible improvements to this
work are enumerated. Finally, in appendix, the relation between polynomial
multiplication and linear and circular convolutions is explained.

6 Introduction

Chapter 2

Number Theoretic Transform

Kumar’s algorithm makes use of the Fast Fourier Transform (FFT) to speed
up its computations. In this chapter, we review its basis.

Discrete Fourier Transforms are computed in O(n log n) using FFT
algorithms. Such algorithms depend on the factorization of the input
sequence length. In this chapter, some of them are detailed and exampled
focusing on their applicability to solve number theoretic transforms. After
this study we conclude that any NTT can be computed in quasi linear time.
We wish to stress that FFT algorithms are found described over the real
and the complex fields, so that, an extra work to see its applicability over
finite fields has been necessary.

The Discrete Fourier Transform (DFT) transforms a discrete function
into another represented in the frequency domain. The input to the DFT is
a finite sequence of real or complex samples.

The DFT is widely employed in signal processing and related fields to
analyse the frequencies contained in a sampled signal, to solve partial dif-
ferential equations, and to perform other operations such as convolutions or
multiplication of large integers.

A given sequence of N complex numbers x0, x1, . . . , xN−1 is transformed
into a sequence of N complex numbers X0, X1, . . . , XN−1 by the DFT ac-
cording to the formula:

Xj =
N−1∑
k=0

xke
− 2πi

N
jk, j = 0, 1, . . . , N − 1, (2.1)

where i is the imaginary unit and e
2πi
N is a primitive N -th root of unity.

7

8 Number Theoretic Transform

Definition 1 z is an N-th root of unity, for positive integers N , if

zN = 1.

Definition 2 An N-th root of unity z is primitive if

zk 6= 1, ∀k ∈ {1, 2, . . . , N − 1}.

The Inverse discrete Fourier transform (IDFT) is given by:

xj =
1

N

N−1∑
k=0

Xke
2πi
N
jk, j = 0, 1, · · · , N − 1. (2.2)

The Number Theoretic Transform (NTT) is the equivalent to DFT,
when operating over finite fields.

Given a prime field Fp and a sequence x0, x1, . . . , xN−1 of N elements of
Fp, in order to consider the corresponding transformed sequence we need that
N | (p − 1), that is p = ζN + 1 for some positive integer ζ. The equivalent

to e
2πi
N in DFT is now ωζ (a positive N -th root of the unity) such that ω is

a primitive ζN -root of the unity. Therefore, ζ is the lowest positive integer
such that ωζN ≡ 1 (mod p).

Let x = (x0, x1, · · · , xN−1) be the input sequence of field elements and
X = (X0, X1, · · · , XN−1) be the NTT of x. The sequence X = NTT (x) is
defined as:

Xj ≡
N−1∑
k=0

xk(ω
ζ)jk (mod p), j = 0, 1, · · · , N − 1. (2.3)

Similarly, the Inverse Number Theoretic Transform x = NTT−1(X) is
given by expression:

xj ≡ N−1

N−1∑
k=0

Xk(ω
−ζ)jk (mod p), j = 0, 1, · · · , N − 1, (2.4)

where N−1 and ω−ζ are the modular multiplicative inverses of N and ωζ ,
respectively.

9

Example 1 Computation of the NTT of the five elements sequence

x = 4 1 7 9 8

over the finite field F11:

The length of the array is N=5. Therefore, ζ=2, since:

ζ =
p− 1

N
= 2

and ω = 2 is a primitive 10-th root of the unity. Indeed

ω = 2, ω2 = 4, ω3 = 8, ω4 = 5, ω5 = 10, ω6 = 9, ω7 = 7, ω8 = 3, ω9 = 6, ω10 = 1.

Now, we can compute the NTT with ωζ = 22 = 4 as:

X0 = 4 · (ω2)
0·0

+ 1 · (ω2)
1·0

+ 7 · (ω2)
2·0

+ 9 · (ω2)
3·0

+ 8 · (ω2)
4·0

= 29
≡ 7 (mod 11)

X1 = 4 · (ω2)
0·1

+ 1 · (ω2)
1·1

+ 7 · (ω2)
2·1

+ 9 · (ω2)
3·1

+ 8 · (ω2)
4·1

= 148
≡ 5 (mod 11)

X2 = 4 · (ω2)
0·2

+ 1 · (ω2)
1·2

+ 7 · (ω2)
2·2

+ 9 · (ω2)
3·2

+ 8 · (ω2)
4·2

= 996
≡ 6 (mod 11)

X3 = 4 · (ω2)
0·3

+ 1 · (ω2)
1·3

+ 7 · (ω2)
2·3

+ 9 · (ω2)
3·3

+ 8 · (ω2)
4·3

= 7720
≡ 9 (mod 11)

X4 = 4 · (ω2)
0·4

+ 1 · (ω2)
1·4

+ 7 · (ω2)
2·4

+ 9 · (ω2)
3·4

+ 8 · (ω2)
4·4

= 64332
≡ 4 (mod 11)

X = 7 5 6 9 4

A Fast Fourier Transform (FFT) is a computationally efficient algorithm
that computes the DFT and its inverse in time O(n log n). There exist many
different FFT algorithms that apply to different cases. For instance, Radix-2
DIT Cooley-Tukey’s Algorithm (for sequences with a power of two length),
General Cooley-Tukey’s Algorithm (for sequences whose length is a com-
posite number) and Rader’s algorithm (for prime length sequences). In the
following sections, they will be explained focusing on their applicability to
NTT.

10 Number Theoretic Transform

After studying them, we have concluded that a fast computation of NTT
(of any length) can be achieved in a recursive manner that employs a combi-
nation of the previously cited algorithms. These three algorithms have been
compiled in procedure 2.0.1. Figure 2.1 shows this in a graphical manner.

Procedure 2.0.1 Fast Fourier Transform
Input: x0, . . . , xN−1 a size N input sequence of elements of Fp and ωζ an

order N element of Fp.
Output: X0, . . . , XN−1 the NTT of x0, . . . , xN−1

if length is a power of two then
return Radix-2-DIT(x0, . . . , xN−1, N , ωζ)

else if length is prime then
return Rader(x0, . . . , xN−1, N , ωζ)

else
return General-Cooley-Tukey(x0, . . . , xN−1, N , ωζ)

end if
return X0, . . . , XN−1.

2.1 Radix-2 DIT Cooley-Tukey’s Algorithm

The radix-2 decimation-in-time (DIT) is a particular case of FFT, which can
be applied when the input sequence length is a power of two. It is easy to
see that this (divide-and-conquer) recursive algorithm runs in O(n log n).

This method reduces the computation of one NTT of size N to the com-
putation of two interleaved NTTs of size N/2. This algorithm requires N to
be a power of two. Radix-2 DIT recursively computes the NTTs (equation
2.3) of the even-indexed inputs and the odd-indexed inputs and then melds
those results to produce the overall NTT of the entire sequence.

2.1 Radix-2 DIT Cooley-Tukey’s Algorithm 11

Figure 2.1: FFT computation Scheme

12 Number Theoretic Transform

Procedure 2.1.1 Radix-2 DIT Cooley-Tukey’s

Input: x0, . . . , xN−1 a size N sequence of elements of Fp with p = ζN + 1
and N a power of two, ωζ an order N element of Fp and s=1.

Output: X0, . . . , XN−1 the NTT of x0, . . . , xN−1

if N=1 then
X0 ← x0 //trivial size-1 NTT case

else
X0, . . . , XN/2−1 ← Radix-2 DIT Cooley-Tukey’s(x,N/2, (ωζ)

2
, 2s)

XN/2, . . . , XN−1 ← Radix-2 DIT Cooley-Tukey’s(x+ s,N/2, (ωζ)
2
, 2s)

for k = 0 to N/2− 1 do
aux← Xk

Xk ← aux+ (ωζ)kXk+N/2

Xk+N/2 ← aux− (ωζ)kXk+N/2

end for
end if

Example 2 Computation of the NTT of the size 4 input sequence

8 1 13 15

over the finite field F17 with ω = 3, ζ = 4, ωζ = 13 employing Radix-2 DIT
algorithm.

The algorithm is recursively called with the even and odd-indexed inputs.

8 1 13 15

8 13

8 13

1 15

1 15

8 + ((ωζ)
2
)
0
· 13 = 4 (mod 17) ↘

8− ((ωζ)
2
)
0
· 13 = 12 (mod 17) ↗

4 12

1 + ((ωζ)
2
)
0
· 15 = 16 (mod 17) ↘

1− ((ωζ)
2
)
0
· 15 = 3 (mod 17) ↗

16 3

4 + (ωζ)
0 · 16 = 3 (mod 17)

12 + (ωζ)
1 · 3 = 0 (mod 17)

4− (ωζ)
0 · 16 = 5 (mod 17)

12− (ωζ)
1 · 3 = 7 (mod 17)︸ ︷︷ ︸

X: 3 0 5 7

2.2 General Cooley-Tukey’s Algorithm 13

2.2 General Cooley-Tukey’s Algorithm

The general Cooley-Tukey’s Algorithm [DV90] reduces the computation of an
NTT over an array x = x0, . . . , xN−1 of size N = N1N2 to the computation
of N1 NTT’s of size N2 plus the computation of N2 NTT’s of size N1. Given
ωζ , a primitive N -root of unity, this is done in the following four steps:

(i) Compute N1 NTT’s of size N2 with (ωζ)
N1 , a primitive N2-root of unity:

Let y0, . . . , yN1−1 be size N2 arrays, with yi[j] = x[j ·N1+i], 1 ≤ i ≤ N1,
1 ≤ j ≤ N2. Compute the NTT of each yi and store the result in vectors
Yi, 1 ≤ i ≤ N1.

(ii) Apply the “twiddle factors” (roots of unity) over the result of the pre-
vious step:
Given vectors Yi, compute Y ′i [j] = Yi[j]·(ωζ)ij, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

(iii) Compute N2 NTT’s of size N1 with (ωζ)
N2 as a primitive N1-root of

unity:
Given vectors Y ′i , let w0, . . . , wN2−1 be size N1 arrays, with wj[i] =
Y ′i [j]. Compute the NTT of each wi and store the result in vectors Wi,
1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

(iv) Compose the final result Z as Z[k] = Wk (mod N2)[k÷N2], 0 ≤ k ≤ N−1.

In our implementation, we have taken N1 as the largest prime factor of N .
This permits that, in the case that N = 2kN ′, applying this algorithm recur-
sively, at the end we will have to compute the NTT of a vector whose length
is 2k which can be done efficiently using Radix-2 DIT algorithm. Moreover,
this facilitates our computations by avoiding some recursive calls to Shoup’s
circular convolution. Later we will see that Shoup’s circular convolution is
hard to compute when extended fields are involved.

Example 3 NTT computation of the size 12 sequence

x = 1 4 11 3 1 7 9 8 2 10 6 1

over the finite field F13 with ω = 2, ζ = 1, ωζ = 2 using the General Cooley-
Tukey’s algorithm

(i) Let the length of the array factorize as 12 = 22 · 3. We assign N1 = 3
and N2 = 4

14 Number Theoretic Transform

(ii) Perform 3 NTT of size 4. As the length is a power of two, this can be
done with the Radix-2 DIT algorithm

y0 = 1 3 9 10
FFT−−→ Y0 = 10 1 10 9

y1 = 4 1 8 6
FFT−−→ Y1 = 6 8 5 10

y2 = 11 7 2 1
FFT−−→ Y2 = 8 5 5 0

(iii) Multiply the resulting vectors by the twiddle factors

Y0 = 10 1 10 9

10 · (ωζ)0·0 = 10
1 · (ωζ)0·1 = 1
10 · (ωζ)0·2 = 10
9 · (ωζ)0·3 = 9

Y ′0 = 10 1 10 9

Y1 = 6 8 5 10

6 · (ωζ)1·0 = 6
8 · (ωζ)1·1 = 3
5 · (ωζ)1·2 = 7
10 · (ωζ)1·3 = 2

Y ′1 = 6 3 7 2

Y2 = 8 5 5 0

8 · (ωζ)2·0 = 8
5 · (ωζ)2·1 = 7
5 · (ωζ)2·2 = 2
0 · (ωζ)2·3 = 0

Y ′2 = 8 7 2 0

(iv) Compute 4 NTT of size 3. As 3 is a prime number, this can be done
through the Rader’s algorithm

w0 = 10 6 8
FFT−−→ W0 = 11 9 10

w1 = 1 3 7
FFT−−→ W1 = 11 8 10

w2 = 10 7 2
FFT−−→ W2 = 6 10 1

w3 = 9 2 0
FFT−−→ W3 = 11 2 1

(v) Compose the final result

Z = 11 11 6 11 9 8 10 2 10 10 1 1

2.3 Rader’s algorithm 15

2.3 Rader’s algorithm

When the length of our input vector is prime, Cooley-Tukey recursion can
not be applied. In this case, Rader’s algorithm [Rad68] re-expresses the NTT
of a sequence of prime length N as a cyclic convolution of two length N − 1
sequences.

Remember that the NNT of a sequence x0, . . . , xN−1 with elements over
Fp is defined as:

Xj ≡
N−1∑
k=0

xk(ω
ζ)jk (mod p), j = 0, 1, · · · , N − 1.

When N is a prime number, the sequence of indices k = 1, . . . , N − 1
forms a multiplicative group modulo N , which is cyclic. Then, there exists
a primitive root of unity ω, so that ∀k, 1 ≤ k ≤ N − 1 there exists r ∈ N
such that k = ωr (mod N). Similarly, we can define the generator of indices
j = 1, . . . , N − 1 as j = ω−s (mod N).

Substituting k and j, we obtain a new definition of the NTT:

X0 =
N−1∑
k=0

xk, (2.5)

Xω−s = x0 +
N−2∑
r=0

xωr(ω
−ζ)ω

r−s
, s = 0, 1, . . . , N − 2, (2.6)

where the second addend of equation 2.6 is the same as the circular convo-
lution of two sequences of size N − 1 (as it can be seen in A), obtaining:

Xω−s = x0 + (xωr ~ (ω−ζ)ω
−r

)︸ ︷︷ ︸
circular convolution

, s = 0, 1, . . . , N − 2. (2.7)

In order to efficiently convolute them using the Shoup’s circular convolu-
tion (section 2.4), the length must be a power of two so that it can call the
Radix-2 DIT Cooley-Tukey’s algorithm (section 2.1). To this end, we first
append zeros to the end of these arrays to double their length (now it is a
linear convolution) and then we add some more zeros until their length is a
power of two. For more details about convolutions see appendix A.

16 Number Theoretic Transform

Example 4 Computation of the NTT of the length 5 sequence

x = 1 8 5 10 7

over the finite field F11 with ω = 2, ζ = 2, ωζ = 4

(i) Compute two new arrays a, b of length N − 1

ω0 = 1→ a0 = x1 = 8
ω1 = 2→ a1 = x2 = 5
ω2 = 4→ a2 = x4 = 7
ω3 = 3→ a3 = x3 = 10

 −→ a = 8 5 7 10

(w−ζ)ω
0

= 4→ b0 = 4

(w−ζ)ω
−1

= 9→ b1 = 9

(w−ζ)ω
−2

= 3→ b2 = 3

(w−ζ)ω
−3

= 5→ b3 = 5

 −→ b = 4 9 3 5

(ii) Perform the linear convolution a~ b.

a = 8 5 7 10 0 0 0 0

b = 4 9 3 5 0 0 0 0

}
~−→ 10 4 9 4 4 10 6 0

(iii) Transform the linear convolution into the circular one.

10 4 9 4 4 10 6 0
linear to circular conv−−−−−−−−−−→ cc = 3 3 4 4

(iv) Join these results as formula 2.7:

X0 =
∑N−1

k=0 xk = 1 + 8 + 5 + 10 + 7 = 31 (mod 11) = 9
X1 = x0 + cc0 = 1 + 3 = 4
X2 = x0 + cc3 = 1 + 4 = 5
X3 = x0 + cc1 = 1 + 3 = 4
X4 = x0 + cc2 = 1 + 4 = 5

X = 9 4 5 4 5

2.4 Shoup’s circular convolution 17

2.4 Shoup’s circular convolution

Victor Shoup [Sho96] implemented a fast O(n log n) FFT-based algorithm to
efficiently multiply and divide polynomials of high degree (more than 30).
Since the multiplication of two polynomials can be viewed as the convolution
of two signals whose samples are the polynomials coefficients, we will employ
Shoup’s proposal to this end. The description we give assumes the input
signal length is a power of two. In this way, the very efficient Radix-2 DIT
NTT algorithm can be employed.

The algorithm to circularly convolute two signals g, h with coefficients in
Fp whose amount of samples is 2M is performed in 4 steps:

(i) Choose a set of “NTT-primes” q1, . . . , q` such that:

• 2M | qi − 1, for 1 ≤ i ≤ `.

• The product P =
∏`

i=1 qi is larger than 2Mp2.

(ii) Reduce all the coefficients modulo each of the “NTT-primes” q1, . . . , q`,
obtaining signals gi, hi with coefficients in Fqi , for 1 ≤ i ≤ `.

(iii) Compute ui = gi·hi using the FFT-based circular convolution, which
consists of 3 steps:

• Compute the NTT of each gi, hi, for 1 ≤ i ≤ `,

Gi = NTT (gi), Hi = NTT (hi), for 1 ≤ i ≤ `.

• Compute Ui = Gi ·Hi, for 1 ≤ i ≤ `, multiplying samples one by
one.

• Compute the inverse NTT (INTT) of each Ui,

Ui = INTT (ui), for 1 ≤ i ≤ `.

(iv) Apply the Chinese Remainder Theorem (CRT) to obtain the final so-
lution s in Fp.

In our implementation, this algorithm is always called to convolute the
sequences resulting from Rader’s reduction. Such sequences are previously
padded with zeros until its length is a power of two. This permits NTT and
INTT to be performed employing Radix-2 DIT Cooley-Tukey’s algorithm
2.1.

It is also worth mentioning that, since the coefficients of the input se-
quence are reduced modulo a prime, we need to provide a new ω for each
“NTT-prime”.

18 Number Theoretic Transform

Example 5 Computation of the circular convolution of length 4 inputs

a = 54 123 2 23 b = 82 37 69 36

over the finite field F127:

(i) Compute the “NTT-primes”:

NTT-primes = 17 97 113 193

since:

24 | 16
24 | 96
24 | 112
24 | 192

and
4∏
i=1

qi = 17·97·113·193 = 35963041 > 258064 = 24·1272.

(ii) Reduce each array modulo each one of the “NTT-primes”:

a17 = 3 4 2 6 b17 = 14 3 1 2

a97 = 54 26 2 23 b97 = 82 37 69 36

a113 = 54 10 2 23 b113 = 82 37 69 36

a193 = 54 123 2 23 b17 = 82 37 69 36

(iii) The circular convolution is computed in three steps: the computation of
the NTT, multiplication of the coefficients one by one and the compu-
tation of the INTT:

a17
NTT−−→ 15 9 12 10 ↘

b17
NTT−−→ 3 9 10 0 ↗

11 13 1 0
INTT−−→ 2 7 4 15

a97
NTT−−→ 8 21 7 83 ↘

b97
NTT−−→ 30 35 78 88 ↗

46 56 61 29
INTT−−→ 48 66 54 72

a113
NTT−−→ 89 21 23 83 ↘

b113
NTT−−→ 111 111 78 28 ↗

48 71 99 64
INTT−−→ 14 70 3 74

a193
NTT−−→ 9 58 103 46 ↘

b193
NTT−−→ 31 125 78 94 ↗

86 109 121 78
INTT−−→ 2 40 5 39

2.4 Shoup’s circular convolution 19

(iv) And finally, these four results are combined with the Chinese Reminder
Theorem in order to obtain the final solution modulo 127, which is:

66 27 125 72

20 Number Theoretic Transform

Chapter 3

Kumar’s algorithm

In this chapter, Kumar’s algorithm to solve Toeplitz systems over the real
field is described. This algorithm is composed of three differentiated steps.
However, just the first one is widely detailed since this is the only one whose
adaptation to work over finite fields is not straightforward.

Kumar [Kum85] proposed an algorithm, which is a modification of the
Trench algorithm [Tre64], to solve a Toeplitz system of equations Tx = y
over real numbers, where T is a Toeplitz matrix of order n + 1, x is the
n+ 1-size vector of unknowns and y is a known vector of size n+ 1. Instead
of beginning with the inversion of a lower-size matrix and repetitively com-
pute inverse matrices of higher dimension, Kumar reverses the process which
mainly consists of three following steps:

(i) Embed the Toeplitz matrix T into a Circulant matrix C (a circulant
matrix is a Toeplitz one which is a cyclic right shift matrix) and com-
pute the inverse of C.

(ii) Compute the inverse of the Toeplitz matrix T , T−1, from the first row
and column of C−1.

(iii) Solve the Toeplitz system in terms of the first row and column of T−1.

21

22 Kumar’s algorithm

3.1 First step of Kumar’s algorithm

Computation of the first row and column of the inverse circulant matrix
performing Fourier transforms.

(i) Embed the Toeplitz matrix T of order n+ 1

T =


t0 t−1 . . . t−n
t1 t0 . . . t−n+1

t2 t1 . . . t−n+2
...

...
. . .

...
tn tn−1 . . . t0


into a Circulant matrix C of order 2n+ 1,

C =



t0 t−1 . . . t−n tn tn−1 . . . t1
t1 t0 . . . t−n+1 t−n tn . . . t2
t2 t1 . . . t−n+2 t−n+1 t−n . . . t3
...

...
. . .

...
...

...
. . .

...
tn tn−1 . . . t0 t2n t2n−1 . . . tn+1

tn+1 tn . . . t1 t0 t2n . . . tn+2

tn+2 tn+1 . . . t2 t1 t0 . . . tn+3
...

...
. . .

...
...

...
. . .

...
t2n t2n−1 . . . tn+2 tn+1 tn . . . t0


.

Note that a circulant matrix is uniquely represented by its first row.
We will denote the first row of C by C(1).

(ii) Let us assume C is non-singular (with non-zero determinant), then its
inverse matrix C−1 does exist (it is also circulant). Given the first row
of C, the first row of C−1 can be computed as:

(a) Compute the DFT of the sequence C(1).

(b) Compute the sequence C ′(1) = 1/C(1).

(c) Compute C−1
(1) , the IDFT of the sequence C ′(1).

The computational cost of step i is O(n), while the cost of step ii is
dominated by the computation of DFT transforms. This motivates the need
to employ efficient FFT algorithms to compute such transformations.

3.2 Second step of Kumar’s algorithm 23

3.2 Second step of Kumar’s algorithm

Computation of the first row and column of the inverse Toeplitz matrix from
the first row and column of the inverse circulant matrix.

(i) Let rn,0, rn,1, . . . , rn,n and c0,n, c1,n, . . . , cn,n, n = 2n represent the first
row and the first column elements of C−1 obtained from Step 1.

(ii) Define polynomials:

rn(x) =
n∑
i=0

rn,ix
i, cn(x) =

n∑
i=0

cn,ix
i, rn,0, cn,0 6= 0.

Furthermore, define also polynomials:

r̂n(x) =
n∑
i=0

rn,ix
n−i, ĉn(x) =

n∑
i=0

cn,ix
n−i.

(iii) The corresponding polynomials rn(x), cn(x) for the desired matrix T−1

are obtained by the following iterative procedure:

rn−i−1(x) = remainder in the polynomial division
rn−i(x)

ĉn−i(x)
,

cn−i−1(x) = remainder in the polynomial division
cn−i(x)

r̂n−i(x)
,

for i = 0, 1, . . . , (n−n−1), where rn(x) and cn(x) represent respectively
the first row and the first column of T−1.

3.3 Third step of Kumar’s algorithm

Obtaining the solution x of the Toeplitz system of equations from the
first row of the inverse Toeplitz matrix.

(iv) Define the following (2n+ 1)-dimensional vectors:
h = [cn, . . . , c1, r0, r1, . . . , rn],
r = [0, . . . , 0, r1, r2, . . . , rn], ri = r−1

0 ri, i = 1, . . . , n,
c = [0, . . . , 0, cn, cn−1, . . . , c1], ci = c−1

0 ci, i = 1, . . . , n,
y = [0, . . . , 0, y0, y1, . . . , yn].

24 Kumar’s algorithm

(v) With ~ denoting the cyclic convolution, compute the following:
û = y ~ h,
v̂ = y ~ r,
ŵ = y ~ c.

(vi) Define vectors:
ũ = [û0, . . . , ûn],
ṽ = [0, . . . , 0, v̂0, . . . , v̂n−1],
w̃ = [0, . . . , 0, ŵ0, . . . , ŵn−1],
ṽ and w̃ are (2n + 1)-dimensional vectors obtained by padding v̂ and
ŵ with zeros.

(vii) Evaluate the circular correlations ζ = c ~ ṽ, η = r ~ w̃ and define:

ζ̂ = [ζn, ζn−1, . . . , ζ0],
η̂ = [ηn, ηn−1, . . . , η0].

(viii) Finally, compute the solution x to the system of equations as follows:

x = ũ+ (ζ̂ − η̂)r0.

Chapter 4

Adapting Kumar’s algorithm

In the previous chapter, we have seen that the inverse of a circulant matrix
C can be computed by means of DFT transforms implemented using fast
FFT algorithms. Adapting such procedure to work over finite fields is not
straightforward, since NTT transforms include some limitations that did not
appear on DFT.

Let T be a Toeplitz matrix of order n+1, C the circulant matrix of order
2n+ 1 generated from T and Fp the finite field over which are defined T and
C.

The computation of the inverse of C, can be performed in the following
steps:

(i) Take the first row and the first column of the Toeplitz matrix:

T =


t0 t−1 . . . t−n
t1 t0 . . . t−n+1

t2 t1 . . . t−n+2
...

...
. . .

...
tn tn−1 . . . t0


and generate the first row of C:

C(1) =
(
t0 t−1 . . . t−n tn tn−1 . . . t1

)
.

So as to perform a NTT, one element of order the input sequence length
is required. It may happen that such element does not exist in Fp. So
as to overcome this drawback, different options are available:

(a) Embed zeros between the first row and the first column of T until
the resulting vector length permits to find an element in Fp whose

25

26 Adapting Kumar’s algorithm

order is the new length of C(1).

C(1) = (t0 . . . t−n tn 0 . . . 0︸ ︷︷ ︸
extra zeros

tn−1 . . . t1).

(b) Extend field Fp until the resulting extended field contains elements
with the required order.

(c) Employ a combination of (a) and (b)

All the previous decisions lead to a correct solution.

If no extension is considered, the following steps are exactly the same
as in Kumar’s paper, but changing the DFT by NTT.

(ii) Compute the NTT of C(1), C
′
(1).

NTT is computed with the algorithm shown in procedure 2.0.1 using
the four algorithms detailed in sections 2.1-2.4.

(iii) Compute the sequence C ′′(1) = 1/C ′(1).

This is performed by computing the multiplicative inverse of each ele-
ment of sequence C ′(1).

(iv) Compute C−1
(1) , the INTT of the sequence C ′′(1), which is done

using again the algorithm shown in procedure 2.0.1, but employing
INTT instead of NTT. The output is the first row of the inverse matrix
C−1.

Example 6 Solving the following Toeplitz system of equations defined over
F11 using the adaptation of Kumar’s algorithm over finite fields.

1 2 3 5
4 1 2 3
6 4 1 2
9 6 4 1


︸ ︷︷ ︸

T


x
y
z
t

 =


3
9
10
8



(i) Take the first row and the first column of T and generate the first row
of C. We need to add some zeros until the new vector length allows
having an element of this latter order in F11:

C(1) = 1 2 3 5 0 0 0 9 6 4

27

(ii) Compute the NTT of C(1):

C ′(1) = 8 8 4 7 6 1 10 4 10 7

(iii) Compute the modular inverses of the previous sequence:

C ′′(1) = 7 7 3 8 2 1 10 3 10 8

(iv) Compute the INTT of C ′′(1):

C−1
(1) = 7 3 10 4 8 6 2 10 10 2

(v) Generate C−1 from its first row:

C−1 =



7 3 10 4 8 6 2 10 10 2
2 7 3 10 4 8 6 2 10 10
10 2 7 3 10 4 8 6 2 10
10 10 2 7 3 10 4 8 6 2
2 10 10 2 7 3 10 4 8 6
6 2 10 10 2 7 3 10 4 8
8 6 2 10 10 2 7 3 10 4
4 8 6 2 10 10 2 7 3 10
10 4 8 6 2 10 10 2 7 3
3 10 4 8 6 2 10 10 2 7


(vi) Define polynomials rn(x), cn(x), r̂n(x) and ĉn(x):

rn(x) = 2x9 + 10x8 + 10x7 + 2x6 + 6x5 + 8x4 + 4x3 + 10x2 + 3x+ 7
cn(x) = 3x9 + 10x8 + 4x7 + 8x6 + 6x5 + 2x4 + 10x3 + 10x2 + 2x+ 7
r̂n(x) = 7x9 + 3x8 + 10x7 + 4x6 + 8x5 + 6x4 + 2x3 + 10x2 + 10x+ 2
ĉn(x) = 7x9 + 2x8 + 10x7 + 10x6 + 2x5 + 6x4 + 8x3 + 4x2 + 10x+ 3

(vii) Apply the iterative method until get polynomials of the same degree as
the initial matrix T :
rn−1(x) = 4x7 + 7x6 + 7x5 + 8x3 + x2 + 8x+ 3

cn−1(x) = 4x8 + 6x7 + x5 + x4 + 6x3 + x2 + 4x+ 3

r̂n−1(x) = 3x8 + 8x7 + x6 + 8x5 + 7x3 + 7x2 + 4x

ĉn−1(x) = 3x8 + 4x7 + x6 + 6x5 + x4 + x3 + 6x+ 4

rn−2(x) = 4x7 + 7x6 + 7x5 + 8x3 + x2 + 8x+ 3

cn−2(x) = 10x7 + 6x6 + 5x5 + x4 + 4x3 + 10x2 + 6x+ 3

r̂n−2(x) = 3x7 + 8x6 + x5 + 8x4 + 7x2 + 7x+ 4

ĉn−2(x) = 3x7 + 6x6 + 10x5 + 4x4 + x3 + 5x2 + 6x+ 10

28 Adapting Kumar’s algorithm

rn−3(x) = 10x6 + x5 + 2x4 + 3x3 + 9x2 + 8

cn−3(x) = 5x6 + 9x5 + 4x3 + 5x2 + x+ 8

r̂n−3(x) = 8x6 + 9x4 + 3x3 + 2x2 + x+ 10

ĉn−3(x) = 8x6 + x5 + 5x4 + 4x3 + 9x+ 5

rn−4(x) = 8x5 + 4x4 + 9x3 + 9x2 + 8x+ 10

cn−4(x) = 9x5 + 4x4 + 9x3 + x2 + 10x+ 10

r̂n−4(x) = 10x5 + 8x4 + 9x3 + 9x2 + 4x+ 8

ĉn−4(x) = 10x5 + 10x4 + x3 + 9x2 + 4x+ 9

rn−5(x) = 7x4 + 6x3 + 4x2 + 7x+ 5

cn−5(x) = 10x4 + 2x3 + 5x2 + 2x+ 5

r̂n−5(x) = 5x4 + 7x3 + 4x2 + 6x+ 7

ĉn−5(x) = 5x4 + 2x3 + 5x2 + 2x+ 10

rn−6(x) = x3 + 8x2 + 2x+ 2 = rn(x)

cn−6(x) = 10x3 + 8x2 + x+ 2 = cn(x)

The first row and column of T−1 are [2, 2, 8, 1] and [2, 1, 8, 10], respec-
tively.

(viii) Define the (2n+ 1)-dimensional vectors:
h = [10, 8, 1, 2, 2, 8, 1],
r̂ = [0, 0, 0, 0, 1, 4, 6],
ĉ = [0, 0, 0, 0, 5, 4, 6],
ŷ = [0, 0, 0, 3, 9, 10, 8].

(ix) Perform the cyclic convolutions:
û = [2, 6, 3, 7, 5, 10, 3],
v̂ = [9, 9, 8, 0, 7, 0, 0],
ŵ = [1, 5, 7, 0, 7, 0, 1].

(x) Define vectors:
ũ = [2, 6, 3, 7],
ṽ = [0, 0, 0, 0, 9, 9, 8],
w̃ = [0, 0, 0, 0, 1, 5, 7].

4.1 Working over field extensions 29

(xi) Evaluate the circular correlations and define ζ̂ and η̂:
ζ = [8, 2, 10, 0, 0, 7, 0],
η = [8, 1, 6, 0, 0, 7, 0],

ζ̂ = [0, 10, 2, 8],
η̂ = [0, 6, 1, 8].

(xii) Finally, compute the solution x to the system of equations:

x = ũ+ (ζ̂ − η̂)r0 = [2, 3, 5, 7].

4.1 Working over field extensions

When performing NTT’s over an extension of the base field Fp, we have to
take into account that Shoup’s method to compute a circular convolution
(section 2.4) was designed to work over prime fields and it can not be di-
rectly applied over extended fields. So as to overcome this limitation, we
have designed an alternative procedure.

The convolution of two sequences a and b is performed by splitting each
element of the extended field into d elements of the base field, where d is
the degree of the extension, obtaining for each sequence of elements of Fpd d
sequences of elements of Fp. Next, we perform one convolution for each pair
of sequences ai, bi, i ∈ [0, d− 1]. See step (ii) in the following example.

Example 7 Computation of the NTT of the length 3 sequence

x = 3 2 1

of elements of F5 with ω = 2 and ωζ = 2α+ 1, α is a generator of F∗52, using
Rader’s algorithm:

(i) Compute two new sequences a, b of length N − 1=2

ω0 = 1→ a0 = x1 = 2
ω1 = 2→ a1 = x2 = 1

}
−→ a = 2 1

(ωζ)ω
0

= 2α + 1→ b0 = 2α + 1

(ωζ)ω
−1

= 3α + 3→ b1 = 3α + 3

}
−→ b = 2α + 1 3α + 3

30 Adapting Kumar’s algorithm

(ii) To perform the circular convolution a~ b, we split the sequence b into
two new sequences, one with the elements of degree 0 and the other with
degree 1. Each one is convoluted with sequence a and afterwards, both
solutions are added.

b = 2α + 1 3α + 3 0 0
↗ b0 = 1 3 0 0

↘ b1 = 2 3 0 0

a = 2 1 0 0

b0 = 1 3 0 0

}
~−→ 2 2 3 0 ↘

a = 2 1 0 0

b1 = 2 3 0 0

}
~−→ 4 3 3 0 ↗

4α+ 2 3α+ 2 3α+ 3 0

If both a and b belonged to an extended field, we would have divided
both sequences into sequences of elements of the basis field.

(iii) Transform the linear convolution into a circular one.

4α + 2 3α + 2 3α + 3 0
linear to circular conv−−−−−−−−−−→ cc = 2α 3α + 2

(iv) Join these results as indicated in formula 2.7:

X0 =
∑N−1

k=0 xk = 3 + 2 + 1 = 6 = 1 (mod 5)
X1 = x0 + cc0 = 3 + 2α = 2α + 3
X2 = x0 + cc3 = 3 + 3α + 2 = 3α

X = 1 2α + 3 3α

Chapter 5

Outcomes and Future work

Some examples with different matrices and field sizes have been carried out
and the results are shown in this chapter. Possible improvements to this
project are detailed in section 5.2.

5.1 Outcomes

Table 5.1 shows NTT computation time results of input sequences of size 10,
20, 50, 100, 150, 300 and 625 defined over different fields Fp of size 15, 57,
110, 164, 296, 1093, 4849 and 7153 bits. It can be easily seen in table 5.1 and
in figure 5.1 that computation time grows with the size of the matrix and/or
the group.

Size of circulant matrix
Bit length 10× 10 20× 20 50× 50 100× 100 150× 150 300× 300 625× 625

15 0.066 0.086 0.550 0.918 2.294 4.499 14.724
57 0.182 0.226 1.429 2.254 5.627 9.807 30.253
110 0.297 0.375 2.383 3.644 9.236 15.890 47.682
164 0.417 0.529 3.419 5.181 12.987 21.788 67.153
296 0.691 0.873 5.472 8.480 21.439 35.349 107.666
1093 2.165 2.724 17.285 26.716 66.850 111.931 334.479
4849 12.272 15.761 82.272 130.547 306.360 514.092 1598.823
7153 22.779 28.334 132.97 209.967 486.719 819.150 2502.071

Table 5.1: Computation time of the inverse circulant matrix in Fp

31

32 Outcomes and Future work

Figure 5.1: Computation time of the inverse circulant matrix in Fp

Figure 5.2 shows NTT computation time results of input sequences up to
size 230 defined over different fields Fp2 of size 10, 15, 20 and 25 bits. From p
of 20 to 25 bits there is a little increase of time and for higher numbers, the
time is extremely high.

Figure 5.2: Computation time of the inverse circulant matrix in Fp2

5.2 Further improvements 33

5.2 Further improvements

As future work, some improvements may be implemented and afterwards
incorporated into the current project are:

(i) Compute “NTT-primes” just once.
Shoup’s circular convolution is called inside a loop from Rader’s algo-
rithm. Although the “NTT-primes” are always the same (because they
only depend on the field and the length of the input sequence), they are
computed as many times as the Shoup’s circular convolution is called.

(ii) Improve the algorithm that decides whether to add zeros at the end of
the sequence or to consider an extension of the field when the necessary
condition to perform the NTT is not fulfilled. This is the length of the
input sequence must divide the field size minus one.

Study if there exists a condition that simplifies this decision.

(iii) Implement the second and third steps of Kumar’s algorithm and study
if some further contribution is possible.

34 Outcomes and Future work

Appendix A

Polynomial multiplication and
convolutions

Polynomial multiplication can be re-expressed as the linear convolution of
two signals whose samples correspond to the input polynomials coefficients.
In this appendix we show the relation between polynomial multiplication,
linear convolutions and circular convolutions.

A.1 Polynomial multiplication and linear

convolution

Let p(x) and q(x) be two polynomials of degree m and n respectively with
coefficients pi and qi in field K,

p(x) = p0 + p1x+ p2x
2 + . . .+ pmx

m. q(x) = q0 + q1x+ q2x
2 + . . .+ qnx

n.

They can be expressed as summations:

p(x) =
m∑
i=0

pi · xi, q(x) =
n∑
i=0

pi · xi.

Therefore, their product is the polynomial of degree m+ n given by

p(x)q(x) = p0q0 + (p0q1 + p1q0)x+ (p0q2 + p1q1 + p2q0)x
2 + . . .

+(p0qm+n + p1qm+n−1 + . . .+ pm+nq0)x
m+n,

which can be expressed as:

35

36 Polynomial multiplication and convolutions

p(x)q(x) =
m+n∑
k=0

(
k∑
i=0

pi · qk−i) · xk = r(x).

Now, we have that the k-th coefficient is:

rk =
k∑
i=0

pi · qk−i. (A.1)

Given two sequences p (of m elements) and q (of n elements) of a field K,
their linear convolution is given by:

s = p ∗ q, s[k] =
k∑
i=0

p[i] · q[k − i], (A.2)

where s[k] is a (m+ n− 1)-length sequence.
We can express a polynomial of degree t as a sequence, taking each k-th

coefficient as the k-th element in the sequence, 0 ≤ k ≤ t.
If we express polynomials p(x) and q(x) in sequence form, it is easy to see

that expressions A.1 and A.2 represent the same, so we can obtain the mul-
tiplication of two polynomials expressing them as sequences and computing
their linear convolution. Let’s see it with a numerical example:

Example 8 Given p(x) = 3x2 + 2x+ 4 and q(x) = x3 + 5x2 + 7,
their product is given by:

p(x)q(x) = (3·1)x5+(3·5+2·1)x4+(2·5+4·1)x3+(3·7+4·5)x2+(2·7)x+4·7

Now, we can express each polynomial as a sequence:

p = 4 2 3 q = 7 0 5 1

and perform the linear convolution. Initially, only one element of each se-
quence are in contact. In each step, the second sequence is moved one position
to the right and the matching boxes are multiplied.

4 2 3
1 5 0 7︸ ︷︷ ︸

4·7

4 2 3
1 5 0 7︸ ︷︷ ︸

4·0+2·7

4 2 3
1 5 0 7︸ ︷︷ ︸

4·5+2·0+3·7

4 2 3
1 5 0 7︸ ︷︷ ︸

4·1+2·5+3·0

4 2 3
1 5 0 7︸ ︷︷ ︸

2·1+3·5

4 2 3
1 5 0 7︸ ︷︷ ︸

3·1

A.2 Linear and circular convolution 37

A.2 Linear and circular convolution

Given two sequences p (of m elements) and q (of n elements), their linear
convolution is a (m+ n− 1)-length sequence given by A.3.

If we take N = max(m,n), the circular convolution is a N -length
sequence given by:

s = p~ q, s[k] =
k∑
i=0

p[i] · q[k − i], (A.3)

Notice that the length of a circular convolution of two sequences is equal
to the length of the longest one while the length of the linear one is the
summation of both sequences lengths.

Let’s see it with an example:

Example 9 Given two sequences

p = 4 2 3 0 q = 7 0 5 1

we are going to compute their circular convolution. As before, initially only
one element of each sequence are in contact. In contrast, the elements that
were left alone in linear convolution are now wrapped around, resulting in a
shorter and different result.

4 2 3 0
7 1 5 0︸ ︷︷ ︸

4·7+2·1+3·5+0·0=45

4 2 3 0
0 7 1 5︸ ︷︷ ︸

4·0+2·7+3·1+0·5=17

4 2 3 0
5 0 7 1︸ ︷︷ ︸

4·5+2·0+3·7+0·1=41

4 2 3 0
1 5 0 7︸ ︷︷ ︸

4·1+2·5+3·0+0·7=14

In this way, the result is not equivalent to the linear convolution, because
the appropriate elements do not match. However, if both lengths are doubled
adding zeros, then the result in both convolutions is exactly the same.

p = 4 2 3 0 0 0 0 0 q = 7 0 5 1 0 0 0 0

4 2 3 0 0 0 0 0
7 0 0 0 0 1 5 0︸ ︷︷ ︸

4·7

4 2 3 0 0 0 0 0
0 7 0 0 0 0 1 5︸ ︷︷ ︸

2·7

4 2 3 0 0 0 0 0
5 0 7 0 0 0 0 1︸ ︷︷ ︸

4·5+3·7

4 2 3 0 0 0 0 0
1 5 0 7 0 0 0 0︸ ︷︷ ︸

4·1+2·5

4 2 3 0 0 0 0 0
0 1 5 0 7 0 0 0︸ ︷︷ ︸

2·1+3·5

4 2 3 0 0 0 0 0
0 0 1 5 0 7 0 0︸ ︷︷ ︸

3·1

38 Polynomial multiplication and convolutions

4 2 3 0 0 0 0 0
0 0 0 1 5 0 7 0︸ ︷︷ ︸

0

4 2 3 0 0 0 0 0
0 0 0 0 1 5 0 7︸ ︷︷ ︸

0

To sum up,

• The convolution of two sequences is like the multiplication of two poly-
nomials in coefficient form where the coefficients of the second polyno-
mial are rotated and matching coefficients are added.

• If the coefficient representations of two m-degree polynomials are ex-
tended by padding the representation with m zeros in the higher-order
terms, then the circular convolution is equivalent to the linear one.

Bibliography

[BMSS06] Bostan, A., Morain, F., Salvy, B., Schost, É., Fast algorithms for
computing isogenies between elliptic curves. Mathematics of Computa-
tion. 2006.

[CLW67] Cooley, J.W., Lewis, P., Welch, P., Historical notes on the fast
Fourier transform. Proceedings of the IEEE, vol. 55, pp. 1675–1677.
1967.

[CT65] Cooley, J.W., Tukey, J.W., An algorithm for the machine calculation
of complex Fourier series. Mathematics of Computation 19, pp. 297–301.
1965.

[DV90] Duhamel, P., Vetterli, M., Fast Fourier transforms: a tutorial review
and a state of the art. Signal processing 19, 259-299. 1990.

[Dur60] Durbin, J., The fitting of time series models. Rev. Inst. Int. Stat., v.
28, pp. 233-243. 1960.

[FS74] Farden, D.C., Scharf, L.L., Statistical Design of Nonrecursive digital
filters. IEEE transactions on acustics, speech and signal processing, vol.
22. 1974.

[Kim08] Kimitei, S. Algorithms for Toeplitz matrices with applications to
image deblurring. Master Thesis in the College of Arts and Sciences,
Georgia. 2008.

[Kum85] Kumar, R., A Fast algorithm for Solving a Toeplitz System of Equa-
tions. IEEE. 1985.

[Lev47] Levinson, N., The Wiener RMS error criterion in filter design and
prediction. J. Math. Phys., v. 25, pp. 261-278. 1947.

[Rad68] Rader, C.M., Discrete Fourier transforms when the number of data
samples is prime. Proceedings of the IEEE, vol. 56, pp.1107-1108. 1968.

39

40 BIBLIOGRAPHY

[Sho96] Shoup, V., A new polynomial factorization algorithm and its imple-
mentation. Journal of Symbolic Computation. 1996.

[Sage] Stein, W. and Joyner, D., SAGE: System for Algebra and Geometry
Experimentation. http://www.sagemath.org/. 2005.

[SA96] Sullivan, J.L., Adams, J.W., An algorithm for solving the Toeplitz
systems of equations in FIR digital filter design problems. IEEE trans-
actions on signal processing, vol. 44. 1996.

[Tre64] Trench, W.F., An algorithm for the inversion of finite Toeplitz ma-
trices. J. SIAM, vol. 12, pp. 515-522. 1964.

[Zoh74] Zohar, S., The solution of a Toeplitz set of linear equations. J. Ass.
Comput. Mach., vol. 21, pp. 272-276. 1974.

http://www.sagemath.org/

	Contents
	Preface
	Introduction
	State of the art
	Applications involving Toeplitz systems
	Purpose

	Number Theoretic Transform
	Radix-2 DIT Cooley-Tukey's Algorithm
	General Cooley-Tukey's Algorithm
	Rader's algorithm
	Shoup's circular convolution

	Kumar's algorithm
	First step of Kumar's algorithm
	Second step of Kumar's algorithm
	Third step of Kumar's algorithm

	Adapting Kumar's algorithm
	Working over field extensions

	Outcomes and Future work
	Outcomes
	Further improvements

	Polynomial multiplication and convolutions
	Polynomial multiplication and linear convolution
	Linear and circular convolution

	Bibliography

